Biosynthesis of UDP-xylose and UDP-arabinose in 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase Free

Abstract

is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including . A mutation in an gene () required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing xylose as well as arabinose are also formed by other rhizobial species, but little is known about their structures and the biosynthetic pathways leading to their formation. To gain insight into the biosynthesis of these glycans and their biological roles, we report the identification of an operon in 1021 that contains two genes encoding activities not previously described in bacteria. One gene encodes a UDP-xylose synthase (Uxs) that converts UDP-glucuronic acid to UDP-xylose, and the second encodes a UDP-xylose 4-epimerase (Uxe) that interconverts UDP-xylose and UDP-arabinose. Similar genes were also identified in other rhizobial species, including , suggesting that they have important roles in the life cycle of this agronomically important class of bacteria. Functional studies established that recombinant SmUxs1 is likely to be active as a dimer and is inhibited by NADH and UDP-arabinose. SmUxe is inhibited by UDP-galactose, even though this nucleotide sugar is not a substrate for the 4-epimerase. Unambiguous evidence for the conversions of UDP-glucuronic acid to UDP---xylose and then to UDP---arabinose (UDP-arabinopyranose) was obtained using real-time H-NMR spectroscopy. Our results provide new information about the ability of rhizobia to form UDP-xylose and UDP-arabinose, which are then used for the synthesis of xylose- and arabinose-containing glycans.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040758-0
2011-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/260.html?itemId=/content/journal/micro/10.1099/mic.0.040758-0&mimeType=html&fmt=ahah

References

  1. Bar-Peled M., Griffith C. L., Doering T. L. 2001; Functional cloning and characterization of a UDP-glucuronic acid decarboxylase: the pathogenic fungus Cryptococcus neoformans elucidates UDP-xylose synthesis. Proc Natl Acad Sci U S A 98:12003–12008
    [Google Scholar]
  2. Breazeale S. D., Ribeiro A. A., Raetz C. R. 2002; Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli . Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem 277:2886–2896
    [Google Scholar]
  3. Burget E. G., Reiter W. D. 1999; The mur4 mutant of Arabidopsis is partially defective in the de novo synthesis of uridine diphospho l-arabinose. Plant Physiol 121:383–389
    [Google Scholar]
  4. Burget E. G., Verma R., Molhoj M., Reiter W. D. 2003; The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis . Plant Cell 15:523–531
    [Google Scholar]
  5. Campbell G. R., Reuhs B. L., Walker G. C. 2002; Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proc Natl Acad Sci U S A 99:3938–3943
    [Google Scholar]
  6. Carlson R. W., Reuhs B. L., Forsberg L. S., Kannenberg E. L. 1999; Rhizobial cell surface carbohydrates: their structures, biosynthesis and functions. In Genetics of Bacterial Polysaccharides pp 53–90 Edited by Goldberg J. B. Boca Raton, FL: CRC Press;
    [Google Scholar]
  7. De Leizaola M., Dedonder R. 1955; Etude de quelques polyoisides produits par des souches de Rhizobium . C R Hebd Seances Acad Sci 240:1825–1827
    [Google Scholar]
  8. Egelund J., Petersen B. L., Motawia M. S., Damager I., Faik A., Olsen C. E., Ishii T., Clausen H., Ulvskov P., Geshi N. 2006; Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)- α -d-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593–2607
    [Google Scholar]
  9. Forsberg L. S., Carlson R. W. 2008; Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: a unique O -methylated glycan of uniform size, containing 6-deoxy-3- O -methyl-d-talose, N -acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-d-gluco-hexuronic acid. J Biol Chem 283:16037–16050
    [Google Scholar]
  10. Gage D. J. 2004; Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300
    [Google Scholar]
  11. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti . Science 293:668–672
    [Google Scholar]
  12. Gatzeva-Topalova P. Z., May A. P., Sousa M. C. 2005; Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure 13:929–942
    [Google Scholar]
  13. Götting C., Kuhn J., Zahn R., Brinkmann T., Kleesiek K. 2000; Molecular cloning and expression of human UDP-d-xylose : proteoglycan core protein β -d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528
    [Google Scholar]
  14. Gu X., Glushka J., Yin Y., Xu Y., Denny T., Smith J. A., Jiang Y., Bar-Peled M. 2010; Identification of a bifunctional UDP-4-keto-pentose/UDP-xylose synthase in the plant pathogenic bacterium, Ralstonia solanacearum str. GMI1000: a distinct member of the 4,6-dehydratase and decarboxylase family. J Biol Chem 285:9030–9040
    [Google Scholar]
  15. Harper A. D., Bar-Peled M. 2002; Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS , encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms. Plant Physiol 130:2188–2198
    [Google Scholar]
  16. Hirsch A. M. 1999; Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326
    [Google Scholar]
  17. Humphrey B. A., Vincent J. M. 1959; Extracellular polysaccharides of Rhizobium . J Gen Microbiol 21:477–484
    [Google Scholar]
  18. Hwang H. Y., Horvitz H. R. 2002; The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci U S A 99:14218–14223
    [Google Scholar]
  19. Jones K. M., Kobayashi H., Davies B. W., Taga M. E., Walker G. C. 2007; How rhizobial symbionts invade plants: the Sinorhizobium Medicago model. Nat Rev Microbiol 5:619–633
    [Google Scholar]
  20. Kannenberg E. L., Brewin N. J. 1989; Expression of a cell surface antigen from Rhizobium leguminosarum 3841 is regulated by oxygen and pH. J Bacteriol 171:4543–4548
    [Google Scholar]
  21. Kannenberg E. L., Carlson R. W. 2001; Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39:379–391
    [Google Scholar]
  22. Kannenberg E. L., Perotto S., Bianciotto V., Rathbun E. A., Brewin N. J. 1994; Lipopolysaccharide epitope expression of Rhizobium bacteroids as revealed by in situ immunolabelling of pea root nodule sections. J Bacteriol 176:2021–2032
    [Google Scholar]
  23. Karr D. B., Liang R. T., Reuhs B. L., Emerich D. W. 2000; Altered exopolysaccharides of Bradyrhizobium japonicum mutants correlate with impaired soybean lectin binding, but not with effective nodule formation. Planta 211:218–226
    [Google Scholar]
  24. Karunakaran R., Ramachandran V. K., Seaman J. C., East A. K., Mouhsine B., Mauchline T. H., Prell J., Skeffington A., Poole P. S. 2009; Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca . J Bacteriol 191:4002–4014
    [Google Scholar]
  25. Keating D. H., Willits M. G., Long S. R. 2002; A Sinorhizobium meliloti lipopolysaccharide mutant altered in cell surface sulfation. J Bacteriol 184:6681–6689
    [Google Scholar]
  26. Klutts J. S., Doering T. L. 2008; Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem 283:14327–14334
    [Google Scholar]
  27. Konishi T., Takeda T., Miyazaki Y., Ohnishi-Kameyama M., Hayashi T., O'Neill M. A., Ishii T. 2007; A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology 17:345–354
    [Google Scholar]
  28. Kuhn J., Götting C., Schnolzer M., Kempf T., Brinkmann T., Kleesiek K. 2001; First isolation of human UDP-d-xylose: proteoglycan core protein β -d-xylosyltransferase secreted from cultured JAR choriocarcinoma cells. J Biol Chem 276:4940–4947
    [Google Scholar]
  29. Laus M. C., Logman T. J., Van Brussel A. A., Carlson R. W., Azadi P., Gao M. Y., Kijne J. W. 2004; Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra . J Bacteriol 186:6617–6625
    [Google Scholar]
  30. Pattathil S., Harper A. D., Bar-Peled M. 2005; Biosynthesis of UDP-xylose: characterization of membrane-bound AtUxs2. Planta 221:538–548
    [Google Scholar]
  31. Peña M. J., Zhong R., Zhou G. K., Richardson E. A., O'Neill M. A., Darvill A. G., York W. S., Ye Z. H. 2007; Arabidopsis irregular xylem8 and irregular xylem9 : implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563
    [Google Scholar]
  32. Porchia A. C., Sorensen S. O., Scheller H. V. 2002; Arabinoxylan biosynthesis in wheat. Characterization of arabinosyltransferase activity in Golgi membranes. Plant Physiol 130:432–441
    [Google Scholar]
  33. Puvanesarajah V., Schell F. M., Gerhold D., Stacey G. 1987; Cell surface polysaccharides from Bradyrhizobium japonicum and a nonnodulating mutant. J Bacteriol 169:137–141
    [Google Scholar]
  34. Ricke S. C., Martin S. A., Nisbet D. J. 1996; Ecology, metabolism, and genetics of ruminal selenomonads. Crit Rev Microbiol 22:27–56
    [Google Scholar]
  35. Sánchez-Andújar B., Coronado C., Philip-Hollingsworth S., Dazzo F. B., Palomares A. J. 1997; Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv trifolii. Mol Gen Genet 255:131–140
    [Google Scholar]
  36. Syn C. K., Swarup S. 2000; A scalable protocol for the isolation of large-sized genomic DNA within an hour from several bacteria. Anal Biochem 278:86–90
    [Google Scholar]
  37. Thoden J. B., Frey P. A., Holden H. M. 1996; Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli : implications for the catalytic mechanism. Biochemistry 35:5137–5144
    [Google Scholar]
  38. van Rhijn P., Vanderleyden J. 1995; The Rhizobium –plant symbiosis. Microbiol Rev 59:124–142
    [Google Scholar]
  39. Zhang Q., Shirley N., Lahnstein J., Fincher G. B. 2005; Characterization and expression patterns of UDP-d-glucuronate decarboxylase genes in barley. Plant Physiol 138:131–141
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040758-0
Loading
/content/journal/micro/10.1099/mic.0.040758-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed