1887

Abstract

Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms. The physiological relevance of the presence of two types of isozymes in a single organism is not clear. an intracellular pathogen, possesses two isoforms of pantothenate kinases (CoaA and CoaX) belonging to type I and III. In order to determine which pantothenate kinase is essential in mycobacteria, we performed gene inactivation of and of individually. It was found that c could only be inactivated in the presence of an extra copy of the gene, while could be inactivated in the wild-type cells, proving that CoaA is the essential pantothenate kinase in . Additionally, the gene of was able to complement a temperature-sensitive mutant of at a non-permissive temperature while could not. The deletion mutant showed no growth defects , in macrophages or in mice. Taken together, our data suggest that CoaX, which is essential in and thus had been suggested to be a drug target in this organism, might not be a valid target in . We have established that the type I isoform, CoaA, is the essential pantothenate kinase in and thus can be explored as a drug target.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040717-0
2010-09-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2691.html?itemId=/content/journal/micro/10.1099/mic.0.040717-0&mimeType=html&fmt=ahah

References

  1. Awasthy D., Gaonkar S., Shandil R. K., Yadav R., Bharath S., Marcel N., Subbulakshmi V., Sharma U.. 2009; Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. Microbiology155:2978–2987
    [Google Scholar]
  2. Brand L. A., Strauss E.. 2005; Characterization of a new pantothenate kinase isoform from Helicobacter pylori. J Biol Chem280:20185–20188
    [Google Scholar]
  3. Chan E. D., Iseman M. D.. 2008; Multidrug-resistant and extensively drug-resistant tuberculosis: a review. Curr Opin Infect Dis21:587–595
    [Google Scholar]
  4. Choudhry A. E., Mandichak T. L., Broskey J. P., Egolf R. W., Kinsland C., Begley T. P., Seefeld M. A., Ku T. W., Brown J. R.. other authors 2003; Inhibitors of pantothenate kinase: novel antibiotics for staphylococcal infections. Antimicrob Agents Chemother47:2051–2055
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  6. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C.. other authors 2001; Massive gene decay in the leprosy bacillus. Nature409:1007–1011
    [Google Scholar]
  7. Converse P. J., Karakousis P. C., Klinkenberg L. G., Kesavan A. K., Ly L. H., Allen S. S., Grosset J. H., Jain S. K., Lamichhane G.. other authors 2009; Role of the dosRdosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect Immun77:1230–1237
    [Google Scholar]
  8. Das S., Kumar P., Bhor V., Surolia A., Vijayan M.. 2006; Invariance and variability in bacterial PanK: a study based on the crystal structure of Mycobacterium tuberculosis PanK. Acta Crystallogr D Biol Crystallogr62:628–638
    [Google Scholar]
  9. Dunn S. D., Snell E. E.. 1979; Isolation of temperature-sensitive pantothenate kinase mutants of Salmonella typhimurium and mapping of the coaA gene. J Bacteriol140:805–808
    [Google Scholar]
  10. Gerdes S. Y., Scholle M. D., D'Souza M., Bernal A., Baev M. V., Farrell M., Kurnasov O. V., Daugherty M. D., Mseeh F.. other authors 2002; From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol184:4555–4572
    [Google Scholar]
  11. Guzman L. M., Belin D., Carson M. J., Beckwith J.. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130
    [Google Scholar]
  12. Hoft D. F.. 2008; Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet372:164–175
    [Google Scholar]
  13. Jackowski S., Rock C. O.. 1981; Regulation of coenzyme A biosynthesis. J Bacteriol148:926–932
    [Google Scholar]
  14. Kumar P., Chhibber M., Surolia A.. 2007; How pantothenol intervenes in Coenzyme-A biosynthesis of Mycobacterium tuberculosis. Biochem Biophys Res Commun361:903–909
    [Google Scholar]
  15. Leonardi R., Chohnan S., Zhang Y. M., Virga K. G., Lee R. E., Rock C. O., Jackowski S.. 2005; A pantothenate kinase from Staphylococcus aureus refractory to feedback regulation by coenzyme A. J Biol Chem280:3314–3322
    [Google Scholar]
  16. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. 2006; An ordered, non-redundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A103:2833–2838
    [Google Scholar]
  17. Muñoz-Elías E. J., McKinney J. D.. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med11:638–644
    [Google Scholar]
  18. Nicely N. I., Parsonage D., Paige C., Newton G. L., Fahey R. C., Leonardi R., Jackowski S., Mallett T. C., Claiborne A.. 2007; Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. Biochemistry46:3234–3245
    [Google Scholar]
  19. Paige C., Reid S. D., Hanna P. C., Claiborne A.. 2008; The type III pantothenate kinase encoded by coaX is essential for growth of Bacillus anthracis. J Bacteriol190:6271–6275
    [Google Scholar]
  20. Parish T., Stoker N. G.. 2000; Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology146:1969–1975
    [Google Scholar]
  21. Parish T., Lewis J., Stoker N. G.. 2001; Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinb81:359–364
    [Google Scholar]
  22. Rivers E. C., Mancera R. L.. 2008; New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discov Today13:1090–1098
    [Google Scholar]
  23. Rock C. O., Park H. W., Jackowski S.. 2003; Role of feedback regulation of pantothenate kinase (CoaA) in control of coenzyme A levels in Escherichia coli. J Bacteriol185:3410–3415
    [Google Scholar]
  24. Saliba K. J., Ferru I., Kirk K.. 2005; Provitamin B5 (pantothenol) inhibits growth of the intraerythrocytic malaria parasite. Antimicrob Agents Chemother49:632–637
    [Google Scholar]
  25. Snell E. E., Shive W.. 1945; Growth inhibition by analogues of pantothenic acid. Pantothenyl alcohol and related compounds. J Biol Chem158:551–559
    [Google Scholar]
  26. Spry C., Chai C. L., Kirk K., Saliba K. J.. 2005; A class of pantothenic acid analogs inhibits Plasmodium falciparum pantothenate kinase and represses the proliferation of malaria parasites. Antimicrob Agents Chemother49:4649–4657
    [Google Scholar]
  27. Spry C., Kirk K., Saliba K. J.. 2008; Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev32:56–106
    [Google Scholar]
  28. Sun R., Converse P. J., Ko C., Tyagi S., Morrison N. E., Bishai W. R.. 2004; Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol52:25–38
    [Google Scholar]
  29. Vallari D. S., Rock C. O.. 1987; Isolation and characterization of temperature-sensitive pantothenate kinase ( coaA) mutants of Escherichia coli. J Bacteriol169:5795–5800
    [Google Scholar]
  30. Wards B. J., Collins D. M.. 1996; Electroporation at elevated temperatures substantially improves transformation efficiency of slow-growing mycobacteria. FEMS Microbiol Lett145:101–105
    [Google Scholar]
  31. Wood G. E., Friedman R. L.. 2000; The Bvg accessory factor (Baf) enhances pertussis toxin expression in Escherichia coli and is essential for Bordetella pertussis viability. FEMS Microbiol Lett193:25–30
    [Google Scholar]
  32. Yang K., Eyobo Y., Brand L. A., Martynowski D., Tomchick D., Strauss E., Zhang H.. 2006; Crystal structure of a type III pantothenate kinase: insight into the mechanism of an essential coenzyme A biosynthetic enzyme universally distributed in bacteria. J Bacteriol188:5532–5540
    [Google Scholar]
  33. Yang K., Strauss E., Huerta C., Zhang H.. 2008; Structural basis for substrate binding and the catalytic mechanism of type III pantothenate kinase. Biochemistry47:1369–1380
    [Google Scholar]
  34. Yocum R. R., Patterson T. A.. 2004; US Patent 6,830,898.
  35. Zhang Y. M., Frank M. W., Virga K. G., Lee R. E., Rock C. O., Jackowski S.. 2004; Acyl carrier protein is a cellular target for the antibacterial action of the pantothenamide class of pantothenate antimetabolites. J Biol Chem279:50969–50975
    [Google Scholar]
  36. Zhao L., Allanson N. M., Thomson S. P., Maclean J. K., Barker J. J., Primrose W. U., Tyler P. D., Lewendon A.. 2003; Inhibitors of phosphopantetheine adenylyltransferase. Eur J Med Chem38:345–349
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040717-0
Loading
/content/journal/micro/10.1099/mic.0.040717-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error