1887

Abstract

The chlamydial protease/proteasome-like activity factor (CPAF) is secreted into the host cytosol to degrade various host factors that benefit chlamydial intracellular survival. Although the full-length CPAF is predicted to contain a putative signal peptide at its N terminus, the secretion pathway of CPAF is still unknown. Here, we have provided experimental evidence that the N-terminal sequence covering the M1–G31 region was cleaved from CPAF during chlamydial infection. The CPAF N-terminal sequence, when expressed in a gene fusion construct, was able to direct the export of the mature PhoA protein across the inner membrane of wild-type . However, mutants deficient in SecB failed to support the CPAF signal-peptide-directed secretion of PhoA. Since native PhoA secretion was known to be independent of SecB, this SecB dependence must be rendered by the CPAF leader peptide. Furthermore, lack of SecY function also blocked the CPAF signal-peptide-directed secretion of PhoA. Most importantly, CPAF secretion into the host cell cytosol during chlamydial infection was selectively inhibited by an inhibitor specifically targeting type I signal peptidase but not by a type III secretion-system-specific inhibitor. Together, these observations have demonstrated that the chlamydial virulence factor CPAF relies on Sec-dependent transport for crossing the chlamydial inner membrane, which has provided essential information for further delineating the pathways of CPAF action and understanding chlamydial pathogenic mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040527-0
2010-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3031.html?itemId=/content/journal/micro/10.1099/mic.0.040527-0&mimeType=html&fmt=ahah

References

  1. Baba, T., Jacq, A., Brickman, E., Beckwith, J., Taura, T., Ueguchi, C., Akiyama, Y. & Ito, K. ( 1990; ). Characterization of cold-sensitive secY mutants of Escherichia coli. J Bacteriol 172, 7005–7010.
    [Google Scholar]
  2. Betts, H. J., Wolf, K. & Fields, K. A. ( 2009; ). Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr Opin Microbiol 12, 81–87.[CrossRef]
    [Google Scholar]
  3. Bhatnagar, R. & Batra, S. ( 2001; ). Anthrax toxin. Crit Rev Microbiol 27, 167–200.[CrossRef]
    [Google Scholar]
  4. Bomberger, J. M., Maceachran, D. P., Coutermarsh, B. A., Ye, S., O'Toole, G. A. & Stanton, B. A. ( 2009; ). Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5, e1000382.[CrossRef]
    [Google Scholar]
  5. Campbell, L. A. & Kuo, C. C. ( 2004; ). Chlamydia pneumoniae – an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2, 23–32.[CrossRef]
    [Google Scholar]
  6. Clifton, D. R., Fields, K. A., Grieshaber, S. S., Dooley, C. A., Fischer, E. R., Mead, D. J., Carabeo, R. A. & Hackstadt, T. ( 2004; ). A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A 101, 10166–10171.[CrossRef]
    [Google Scholar]
  7. Collinson, I. ( 2005; ). The structure of the bacterial protein translocation complex SecYEG. Biochem Soc Trans 33, 1225–1230.[CrossRef]
    [Google Scholar]
  8. Dalbey, R. E. ( 1991; ). Leader peptidase. Mol Microbiol 5, 2855–2860.[CrossRef]
    [Google Scholar]
  9. Dong, F., Pirbhai, M., Zhong, Y. & Zhong, G. ( 2004a; ). Cleavage-dependent activation of a chlamydia-secreted protease. Mol Microbiol 52, 1487–1494.[CrossRef]
    [Google Scholar]
  10. Dong, F., Sharma, J., Xiao, Y., Zhong, Y. & Zhong, G. ( 2004b; ). Intramolecular dimerization is required for the chlamydia-secreted protease CPAF to degrade host transcriptional factors. Infect Immun 72, 3869–3875.[CrossRef]
    [Google Scholar]
  11. Dong, F., Su, H., Huang, Y., Zhong, Y. & Zhong, G. ( 2004c; ). Cleavage of host keratin 8 by a chlamydia-secreted protease. Infect Immun 72, 3863–3868.[CrossRef]
    [Google Scholar]
  12. Dong, F., Zhong, Y., Arulanandam, B. & Zhong, G. ( 2005; ). Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different chlamydia species. Infect Immun 73, 1868–1872.[CrossRef]
    [Google Scholar]
  13. Dong, F., Flores, R., Chen, D., Luo, J., Zhong, Y., Wu, Z. & Zhong, G. ( 2006; ). Localization of the hypothetical protein Cpn0797 in the cytoplasm of Chlamydia pneumoniae-infected host cells. Infect Immun 74, 6479–6486.[CrossRef]
    [Google Scholar]
  14. Driessen, A. J. & Nouwen, N. ( 2008; ). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77, 643–667.[CrossRef]
    [Google Scholar]
  15. Economou, A. ( 1999; ). Following the leader: bacterial protein export through the Sec pathway. Trends Microbiol 7, 315–320.[CrossRef]
    [Google Scholar]
  16. Eissenberg, L. G., Wyrick, P. B., Davis, C. H. & Rumpp, J. W. ( 1983; ). Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect Immun 40, 741–751.
    [Google Scholar]
  17. Fan, T., Lu, H., Hu, H., Shi, L., McClarty, G. A., Nance, D. M., Greenberg, A. H. & Zhong, G. ( 1998; ). Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187, 487–496.[CrossRef]
    [Google Scholar]
  18. Fan, P., Dong, F., Huang, Y. & Zhong, G. ( 2002; ). Chlamydia pneumoniae secretion of a protease-like activity factor for degrading host cell transcription factors required for major histocompatibility complex antigen expression. Infect Immun 70, 345–349.[CrossRef]
    [Google Scholar]
  19. Fields, K. A. & Hackstadt, T. ( 2000; ). Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol Microbiol 38, 1048–1060.
    [Google Scholar]
  20. Fields, K. A., Mead, D. J., Dooley, C. A. & Hackstadt, T. ( 2003; ). Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol Microbiol 48, 671–683.[CrossRef]
    [Google Scholar]
  21. Francetic, O. & Kumamoto, C. A. ( 1996; ). Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants. J Bacteriol 178, 5954–5959.
    [Google Scholar]
  22. Giles, D. K., Whittimore, J. D., LaRue, R. W., Raulston, J. E. & Wyrick, P. B. ( 2006; ). Ultrastructural analysis of chlamydial antigen-containing vesicles everting from the Chlamydia trachomatis inclusion. Microbes Infect 8, 1579–1591.[CrossRef]
    [Google Scholar]
  23. Greene, W., Xiao, Y., Huang, Y., McClarty, G. & Zhong, G. ( 2004; ). Chlamydia-infected cells continue to undergo mitosis and resist induction of apoptosis. Infect Immun 72, 451–460.[CrossRef]
    [Google Scholar]
  24. Hackstadt, T., Fischer, E. R., Scidmore, M. A., Rockey, D. D. & Heinzen, R. A. ( 1997; ). Origins and functions of the chlamydial inclusion. Trends Microbiol 5, 288–293.[CrossRef]
    [Google Scholar]
  25. Hefty, P. S. & Stephens, R. S. ( 2007; ). Chlamydial type III secretion system is encoded on ten operons preceded by sigma 70-like promoter elements. J Bacteriol 189, 198–206.[CrossRef]
    [Google Scholar]
  26. Hobolt-Pedersen, A. S., Christiansen, G., Timmerman, E., Gevaert, K. & Birkelund, S. ( 2009; ). Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol Med Microbiol 57, 46–58.[CrossRef]
    [Google Scholar]
  27. Huang, Z., Feng, Y., Chen, D., Wu, X., Huang, S., Wang, X., Xiao, X., Li, W., Huang, N. & other authors ( 2008; ). Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4, 529–542.[CrossRef]
    [Google Scholar]
  28. Hybiske, K. & Stephens, R. S. ( 2007; ). Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc Natl Acad Sci U S A 104, 11430–11435.[CrossRef]
    [Google Scholar]
  29. Jorgensen, I. & Valdivia, R. H. ( 2008; ). Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion. Infect Immun 76, 3940–3950.[CrossRef]
    [Google Scholar]
  30. Karunakaran, K. P., Noguchi, Y., Read, T. D., Cherkasov, A., Kwee, J., Shen, C., Nelson, C. C. & Brunham, R. C. ( 2003; ). Molecular analysis of the multiple GroEL proteins of Chlamydiae. J Bacteriol 185, 1958–1966.[CrossRef]
    [Google Scholar]
  31. Kumar, Y. & Valdivia, R. H. ( 2008; ). Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4, 159–169.[CrossRef]
    [Google Scholar]
  32. Lad, S. P., Li, J., da Silva Correia, J., Pan, Q., Gadwal, S., Ulevitch, R. J. & Li, E. ( 2007; ). Cleavage of p65/RelA of the NF-κB pathway by Chlamydia. Proc Natl Acad Sci U S A 104, 2933–2938.[CrossRef]
    [Google Scholar]
  33. Lee, V. T. & Schneewind, O. ( 2001; ). Protein secretion and the pathogenesis of bacterial infections. Genes Dev 15, 1725–1752.[CrossRef]
    [Google Scholar]
  34. Lee, E. Y., Choi, D. S., Kim, K. P. & Gho, Y. S. ( 2008; ). Proteomics in Gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 27, 535–555.[CrossRef]
    [Google Scholar]
  35. Li, Z., Chen, C., Chen, D., Wu, Y., Zhong, Y. & Zhong, G. ( 2008a; ). Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect Immun 76, 2746–2757.[CrossRef]
    [Google Scholar]
  36. Li, Z., Chen, D., Zhong, Y., Wang, S. & Zhong, G. ( 2008b; ). The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 76, 3415–3428.[CrossRef]
    [Google Scholar]
  37. Luo, C., Roussel, P., Dreier, J., Page, M. G. & Paetzel, M. ( 2009; ). Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a β-sultam inhibitor. Biochemistry 48, 8976–8984.[CrossRef]
    [Google Scholar]
  38. Mabey, D. ( 2008; ). Trachoma: recent developments. Adv Exp Med Biol 609, 98–107.
    [Google Scholar]
  39. Mårdh, P. A. ( 2004; ). Tubal factor infertility, with special regard to chlamydial salpingitis. Curr Opin Infect Dis 17, 49–52.[CrossRef]
    [Google Scholar]
  40. Marrichi, M., Camacho, L., Russell, D. G. & DeLisa, M. P. ( 2008; ). Genetic toggling of alkaline phosphatase folding reveals signal peptides for all major modes of transport across the inner membrane of bacteria. J Biol Chem 283, 35223–35235.[CrossRef]
    [Google Scholar]
  41. Mashburn-Warren, L. M. & Whiteley, M. ( 2006; ). Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61, 839–846.[CrossRef]
    [Google Scholar]
  42. Mashburn-Warren, L., McLean, R. J. & Whiteley, M. ( 2008; ). Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6, 214–219.[CrossRef]
    [Google Scholar]
  43. Matsumoto, A. & Manire, G. P. ( 1970; ). Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J Bacteriol 101, 278–285.
    [Google Scholar]
  44. Paetzel, M., Karla, A., Strynadka, N. C. & Dalbey, R. E. ( 2002; ). Signal peptidases. Chem Rev 102, 4549–4580.[CrossRef]
    [Google Scholar]
  45. Paetzel, M., Goodall, J. J., Kania, M., Dalbey, R. E. & Page, M. G. ( 2004; ). Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor. J Biol Chem 279, 30781–30790.[CrossRef]
    [Google Scholar]
  46. Pirbhai, M., Dong, F., Zhong, Y., Pan, K. Z. & Zhong, G. ( 2006; ). The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J Biol Chem 281, 31495–31501.[CrossRef]
    [Google Scholar]
  47. Pugsley, A. P., d'Enfert, C., Reyss, I. & Kornacker, M. G. ( 1990; ). Genetics of extracellular protein secretion by Gram-negative bacteria. Annu Rev Genet 24, 67–90.[CrossRef]
    [Google Scholar]
  48. Pugsley, A. P., Francetic, O., Driessen, A. J. & de Lorenzo, V. ( 2004; ). Getting out: protein traffic in prokaryotes. Mol Microbiol 52, 3–11.[CrossRef]
    [Google Scholar]
  49. Roberts, T. C., Smith, P. A., Cirz, R. T. & Romesberg, F. E. ( 2007; ). Structural and initial biological analysis of synthetic arylomycin A2. J Am Chem Soc 129, 15830–15838.[CrossRef]
    [Google Scholar]
  50. Rockey, D. D., Heinzen, R. A. & Hackstadt, T. ( 1995; ). Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol Microbiol 15, 617–626.
    [Google Scholar]
  51. Rzomp, K. A., Moorhead, A. R. & Scidmore, M. A. ( 2006; ). The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect Immun 74, 5362–5373.[CrossRef]
    [Google Scholar]
  52. Saier, M. H., Jr ( 2006; ). Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214, 75–90.[CrossRef]
    [Google Scholar]
  53. Spaeth, K. E., Chen, Y. S. & Valdivia, R. H. ( 2009; ). The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog 5, e1000579.[CrossRef]
    [Google Scholar]
  54. Stathopoulos, C., Hendrixson, D. R., Thanassi, D. G., Hultgren, S. J., St Geme, J. W., III & Curtiss, R., III ( 2000; ). Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect 2, 1061–1072.[CrossRef]
    [Google Scholar]
  55. Stephens, R. S. ( 2003; ). The cellular paradigm of chlamydial pathogenesis. Trends Microbiol 11, 44–51.[CrossRef]
    [Google Scholar]
  56. Su, H., McClarty, G., Dong, F., Hatch, G. M., Pan, Z. K. & Zhong, G. ( 2004; ). Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J Biol Chem 279, 9409–9416.[CrossRef]
    [Google Scholar]
  57. Tuteja, R. ( 2005; ). Type I signal peptidase: an overview. Arch Biochem Biophys 441, 107–111.[CrossRef]
    [Google Scholar]
  58. Valdivia, R. H. ( 2008; ). Chlamydia effector proteins and new insights into chlamydial cellular microbiology. Curr Opin Microbiol 11, 53–59.[CrossRef]
    [Google Scholar]
  59. Vandahl, B. B., Stensballe, A., Roepstorff, P., Christiansen, G. & Birkelund, S. ( 2005; ). Secretion of Cpn0796 from Chlamydia pneumoniae into the host cell cytoplasm by an autotransporter mechanism. Cell Microbiol 7, 825–836.[CrossRef]
    [Google Scholar]
  60. Xiao, Y., Zhong, Y., Su, H., Zhou, Z., Chiao, P. & Zhong, G. ( 2005; ). NF-κB activation is not required for Chlamydia trachomatis inhibition of host epithelial cell apoptosis. J Immunol 174, 1701–1708.[CrossRef]
    [Google Scholar]
  61. Zhong, G. ( 2009; ). Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol 17, 467–474.[CrossRef]
    [Google Scholar]
  62. Zhong, G., Fan, T. & Liu, L. ( 1999; ). Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 189, 1931–1938.[CrossRef]
    [Google Scholar]
  63. Zhong, G., Liu, L., Fan, T., Fan, P. & Ji, H. ( 2000; ). Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J Exp Med 191, 1525–1534.[CrossRef]
    [Google Scholar]
  64. Zhong, G., Fan, P., Ji, H., Dong, F. & Huang, Y. ( 2001; ). Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J Exp Med 193, 935–942.[CrossRef]
    [Google Scholar]
  65. Zhou, J. & Xu, Z. ( 2005; ). The structural view of bacterial translocation-specific chaperone SecB: implications for function. Mol Microbiol 58, 349–357.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040527-0
Loading
/content/journal/micro/10.1099/mic.0.040527-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error