1887

Abstract

DRA0282, a hypothetical protein, was found in a pool of nucleotide-binding proteins in cells recovering from gamma radiation stress. This pool exhibited an unusual inhibition of nuclease activity by ATP. The N terminus of DRA0282 showed similarity to human Ku80 homologues, while the C terminus showed no similarities to known proteins. The recombinant protein required Mn for its interaction with DNA and protected dsDNA from exonuclease III degradation. The binding of the protein to supercoiled DNA with a of ~2.93 nM was nearly 20-fold stronger than its binding to ssDNA and nearly 67-fold stronger than its binding to linear dsDNA. cells expressing DRA0282 showed a RecA-dependent enhancement of UV and gamma radiation tolerance. The Δ mutant of showed a dose-dependent response to gamma radiation. At 14 kGy, the Δ mutant showed nearly 10-fold less survival, while at this dose both  : : Δ and  : :  mutants were nearly 100-fold more sensitive than the wild-type. These results suggested that DRA0282 is a DNA-binding protein with a preference for superhelical DNA, and that it plays a role in bacterial resistance to DNA damage through a pathway in which PprA perhaps plays a dominant role in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040436-0
2011-08-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2196.html?itemId=/content/journal/micro/10.1099/mic.0.040436-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Magelhaes P. J., Ram S. J.. ( 2004; ). Image processing with ImageJ. . Biophoton Int 11:, 36–42.
    [Google Scholar]
  2. Aravind L., Koonin E. V.. ( 2001; ). Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. . Genome Res 11:, 1365–1374. [CrossRef].[PubMed].
    [Google Scholar]
  3. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006; ). The swiss-model workspace: a web-based environment for protein structure homology modelling. . Bioinformatics 22:, 195–201. [CrossRef].[PubMed].
    [Google Scholar]
  4. Battista J. R., Park M. J., McLemore A. E.. ( 2001; ). Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. . Cryobiology 43:, 133–139. [CrossRef].[PubMed].
    [Google Scholar]
  5. Beck B. D., Park S. J., Lee Y. J., Roman Y., Hromas R. A., Lee S. H.. ( 2008; ). Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. . J Biol Chem 283:, 9023–9030. [CrossRef].[PubMed].
    [Google Scholar]
  6. Bentchikou E., Servant P., Coste G., Sommer S.. ( 2010; ). A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans . . PLoS Genet 6:, e1000774. [CrossRef].[PubMed].
    [Google Scholar]
  7. Blasius M., Hübscher U., Sommer S.. ( 2008; ). Deinococcus radiodurans: what belongs to the survival kit?. Crit Rev Biochem Mol Biol 43:, 221–238. [CrossRef].[PubMed].
    [Google Scholar]
  8. Chayot R., Montagne B., Mazel D., Ricchetti M.. ( 2010; ). An end-joining repair mechanism in Escherichia coli . . Proc Natl Acad Sci U S A 107:, 2141–2146. [CrossRef].[PubMed].
    [Google Scholar]
  9. Clark A. J., Margulies A. D.. ( 1965; ). Isolation and characterization of recombination deficient mutants of E. coli K12. . Proc Natl Acad Sci U S A 53:, 451–459. [CrossRef].[PubMed].
    [Google Scholar]
  10. Cox M. M., Battista J. R.. ( 2005; ). Deinococcus radiodurans – the consummate survivor. . Nat Rev Microbiol 3:, 882–892. [CrossRef].[PubMed].
    [Google Scholar]
  11. Daly M. J., Minton K. W.. ( 1996; ). An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans . . J Bacteriol 178:, 4461–4471.[PubMed].
    [Google Scholar]
  12. Daly M. J., Ouyang L., Fuchs P., Minton K. W.. ( 1994; ). In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans . . J Bacteriol 176:, 3508–3517.[PubMed].
    [Google Scholar]
  13. Daly M. J., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Venkateswaran A., Hess M., Omelchenko M. V., Kostandarithes H. M. et al. ( 2004; ). Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. . Science 306:, 1025–1028. [CrossRef].[PubMed].
    [Google Scholar]
  14. Daly M. J., Gaidamakova E. K., Matrosova V. Y., Vasilenko A., Zhai M., Leapman R. D., Lai B., Ravel B., Li S. M. et al. ( 2007; ). Protein oxidation implicated as the primary determinant of bacterial radioresistance. . PLoS Biol 5:, e92. [CrossRef].[PubMed].
    [Google Scholar]
  15. Downs J. A., Jackson S. P.. ( 2004; ). A means to a DNA end: the many roles of Ku. . Nat Rev Mol Cell Biol 5:, 367–378. [CrossRef].[PubMed].
    [Google Scholar]
  16. Gong C., Bongiorno P., Martins A., Stephanou N. C., Zhu H., Shuman S., Glickman M. S.. ( 2005; ). Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C. . Nat Struct Mol Biol 12:, 304–312. [CrossRef].[PubMed].
    [Google Scholar]
  17. Harris D. R., Tanaka M., Saveliev S. V., Jolivet E., Earl A. M., Cox M. M., Battista J. R.. ( 2004; ). Preserving genome integrity: the DdrA protein of Deinococcus radiodurans R1. . PLoS Biol 2:, e304. [CrossRef].[PubMed].
    [Google Scholar]
  18. Kamble V. A., Rajpurohit Y. S., Srivastava A. K., Misra H. S.. ( 2010; ). Increased synthesis of signaling molecules coincides with reversible inhibition of nucleolytic activity during postirradiation recovery of Deinococcus radiodurans . . FEMS Microbiol Lett 303:, 18–25. [CrossRef].[PubMed].
    [Google Scholar]
  19. Khairnar N. P., Misra H. S.. ( 2009; ). DNA polymerase X from Deinococcus radiodurans implicated in bacterial tolerance to DNA damage is characterized as a short patch base excision repair polymerase. . Microbiology 155:, 3005–3014. [CrossRef].[PubMed].
    [Google Scholar]
  20. Khairnar N. P., Kamble V. A., Misra H. S.. ( 2008; ). RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans . . DNA Repair (Amst) 7:, 40–47. [CrossRef].[PubMed].
    [Google Scholar]
  21. Kota S., Misra H. S.. ( 2006; ). PprA: a protein implicated in radioresistance of Deinococcus radiodurans stimulates catalase activity in Escherichia coli . . Appl Microbiol Biotechnol 72:, 790–796. [CrossRef].[PubMed].
    [Google Scholar]
  22. Kota S., Misra H. S.. ( 2008; ). Identification of a DNA processing complex from Deinococcus radiodurans . . Biochem Cell Biol 86:, 448–458. [CrossRef].[PubMed].
    [Google Scholar]
  23. Lee S.-H., Oshige M., Durant S. T., Rasila K. K., Williamson E. A., Ramsey H., Kwan L., Nickoloff J. A., Hromas R.. ( 2005; ). The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. . Proc Natl Acad Sci U S A 102:, 18075–18080. [CrossRef].[PubMed].
    [Google Scholar]
  24. Liu Y., Zhou J., Omelchenko M. V., Beliaev A. S., Venkateswaran A., Stair J., Wu L., Thompson D. K., Xu D. et al. ( 2003; ). Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. . Proc Natl Acad Sci U S A 100:, 4191–4196. [CrossRef].[PubMed].
    [Google Scholar]
  25. Lu X., Legerski R. J.. ( 2007; ). The Prp19/Pso4 core complex undergoes ubiquitylation and structural alterations in response to DNA damage. . Biochem Biophys Res Commun 354:, 968–974. [CrossRef].[PubMed].
    [Google Scholar]
  26. Mahajan K. N., Mitchell B. S.. ( 2003; ). Role of human Pso4 in mammalian DNA repair and association with terminal deoxynucleotidyl transferase. . Proc Natl Acad Sci U S A 100:, 10746–10751. [CrossRef].[PubMed].
    [Google Scholar]
  27. Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J.. ( 2001; ). Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. . Microbiol Mol Biol Rev 65:, 44–79. [CrossRef].[PubMed].
    [Google Scholar]
  28. Markillie L. M., Varnum S. M., Hradecky P., Wong K. K.. ( 1999; ). Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. . J Bacteriol 181:, 666–669.[PubMed].
    [Google Scholar]
  29. Minton K. W.. ( 1994; ). DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans . . Mol Microbiol 13:, 9–15. [CrossRef].[PubMed].
    [Google Scholar]
  30. Misra H. S., Pandey P. K., Modak M. J., Vinayak R., Pandey V. N.. ( 1998; ). Polyamide nucleic acid–DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases. . Biochemistry 37:, 1917–1925. [CrossRef].[PubMed].
    [Google Scholar]
  31. Misra H. S., Khairnar N. P., Kota S., Shrivastava S., Joshi V. P., Apte S. K.. ( 2006; ). An exonuclease I-sensitive DNA repair pathway in Deinococcus radiodurans: a major determinant of radiation resistance. . Mol Microbiol 59:, 1308–1316. [CrossRef].[PubMed].
    [Google Scholar]
  32. Montague M., Barnes C., Smith H. O., Chuang R. Y., Vashee S.. ( 2009; ). The evolution of RecD outside of the RecBCD complex. . J Mol Evol 69:, 360–371. [CrossRef].[PubMed].
    [Google Scholar]
  33. Mount D. W., Low K. B., Edmiston S. J.. ( 1972; ). Dominant mutations (lex) in Escherichia coli K-12 which affect radiation sensitivity and frequency of ultraviolet light-induced mutations. . J Bacteriol 112:, 886–893.[PubMed].
    [Google Scholar]
  34. Narumi I., Satoh K., Cui S., Funayama T., Kitayama S., Watanabe H.. ( 2004; ). PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. . Mol Microbiol 54:, 278–285. [CrossRef].[PubMed].
    [Google Scholar]
  35. O’Donovan A., Scherly D., Clarkson S. G., Wood R. D.. ( 1994; ). Isolation of active recombinant XPG protein, a human DNA repair endonuclease. . J Biol Chem 269:, 15965–15968.[PubMed].
    [Google Scholar]
  36. Pitcher R. S., Brissett N. C., Doherty A. J.. ( 2007; ). Nonhomologous end-joining in bacteria: a microbial perspective. . Annu Rev Microbiol 61:, 259–282. [CrossRef].[PubMed].
    [Google Scholar]
  37. Rajpurohit Y. S., Gopalakrishnan R., Misra H. S.. ( 2008; ). Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans . . J Bacteriol 190:, 3948–3954. [CrossRef].[PubMed].
    [Google Scholar]
  38. Sambrook J., Russell D. W.. ( 2001; ). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  39. Schäfer M., Schmitz C., Facius R., Horneck G., Milow B., Funken K. H., Ortner J.. ( 2000; ). Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. . Photochem Photobiol 71:, 514–523. [CrossRef].[PubMed].
    [Google Scholar]
  40. Slade D., Lindner A. B., Paul G., Radman M.. ( 2009; ). Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans . . Cell 136:, 1044–1055. [CrossRef].[PubMed].
    [Google Scholar]
  41. Tanaka M., Earl A. M., Howell H. A., Park M. J., Eisen J. A., Peterson S. N., Battista J. R.. ( 2004; ). Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. . Genetics 168:, 21–33. [CrossRef].[PubMed].
    [Google Scholar]
  42. Wang J., Li T., Guo X., Lu Z.. ( 2005; ). Exonuclease III protection assay with FRET probe for detecting DNA-binding proteins. . Nucleic Acids Res 33:, e23. [CrossRef].[PubMed].
    [Google Scholar]
  43. Weller G. R., Kysela B., Roy R., Tonkin L. M., Scanlan E., Della M., Devine S. K., Day J. P., Wilkinson A. et al. ( 2002; ). Identification of a DNA nonhomologous end-joining complex in bacteria. . Science 297:, 1686–1689. [CrossRef].[PubMed].
    [Google Scholar]
  44. White O., Eisen J. A., Heidelberg J. F., Hickey E. K., Peterson J. D., Dodson R. J., Haft D. H., Gwinn M. L., Nelson W. C. et al. ( 1999; ). Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. . Science 286:, 1571–1577. [CrossRef].[PubMed].
    [Google Scholar]
  45. Zahradka K., Slade D., Bailone A., Sommer S., Averbeck D., Petranovic M., Lindner A. B., Radman M.. ( 2006; ). Reassembly of shattered chromosomes in Deinococcus radiodurans . . Nature 443:, 569–573.[PubMed].
    [Google Scholar]
  46. Zhang N., Kaur R., Lu X., Shen X., Li L., Legerski R. J.. ( 2005; ). The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. . J Biol Chem 280:, 40559–40567. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040436-0
Loading
/content/journal/micro/10.1099/mic.0.040436-0
Loading

Data & Media loading...

Supplements

[PDF](147 KB)

PDF

[PDF](9 KB)

PDF

[PDF](1068 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error