Outer membrane pore protein prediction in mycobacteria using genomic comparison Free

Abstract

Proteins responsible for outer membrane transport across the unique membrane structure of spp. are attractive drug targets in the treatment of human diseases caused by the mycobacterial pathogens, , , and . In contrast with , relatively few outer-membrane proteins (OMPs) have been identified in spp., largely due to the difficulties in isolating mycobacterial membrane proteins and our incomplete understanding of secretion mechanisms and cell wall structure in these organisms. To further expand our knowledge of these elusive proteins in mycobacteria, we have improved upon our previous method of OMP prediction in mycobacteria by taking advantage of genomic data from seven mycobacteria species. Our improved algorithm suggests 4333 sequences as putative OMPs in seven species with varying degrees of confidence. The most virulent pathogenic mycobacterial species are slightly enriched in these selected sequences. We present examples of predicted OMPs involved in horizontal transfer and paralogy expansion. Analysis of local secondary structure content allowed identification of small domains predicted to perform as OMPs; some examples show their involvement in events of tandem duplication and domain rearrangements. We discuss the taxonomic distribution of these discovered families and architectures, often specific to mycobacteria or the wider taxonomic class of . Our results suggest that OMP functionality in mycobacteria is richer than expected and provide a resource to guide future research of these understudied proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040089-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2506.html?itemId=/content/journal/micro/10.1099/mic.0.040089-0&mimeType=html&fmt=ahah

References

  1. Ahmad S., Akbar P. K., Wiker H. G., Harboe M., Mustafa A. S. 1999; Cloning, expression and immunological reactivity of two mammalian cell entry proteins encoded by the mce1 operon of Mycobacterium tuberculosis. Scand J Immunol 50:510–518
    [Google Scholar]
  2. Ahmad S., El-Shazly S., Mustafa A. S., Al-Attiyah R. 2004; Mammalian cell-entry proteins encoded by the mce3 operon of Mycobacterium tuberculosis are expressed during natural infection in humans. Scand J Immunol 60:382–391
    [Google Scholar]
  3. Alahari A., Saint N., Campagna S., Molle V., Molle G., Kremer L. 2007; The N-terminal domain of OmpATb is required for membrane translocation and pore-forming activity in mycobacteria. J Bacteriol 189:6351–6358
    [Google Scholar]
  4. Bendtsen J. D., Jensen L. J., Blom N., Von Heijne G., Brunak S. 2004a; Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356
    [Google Scholar]
  5. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004b; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795
    [Google Scholar]
  6. Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S. 2005; Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167
    [Google Scholar]
  7. Berven F. S., Flikka K., Jensen H. B., Eidhammer I. 2004; BOMP: a program to predict integral β-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic Acids Res 32:W394–W399
    [Google Scholar]
  8. Bigelow H. R., Petrey D. S., Liu J., Przybylski D., Rost B. 2004; Predicting transmembrane beta-barrels in proteomes. Nucleic Acids Res 32:2566–2577
    [Google Scholar]
  9. Blanco F. C., Nunez-Garcia J., Garcia-Pelayo C., Soria M., Bianco M. V., Zumárraga M., Golby P., Cataldi A. A., Gordon S. V., Bigi F. 2009; Differential transcriptome profiles of attenuated and hypervirulent strains of Mycobacterium bovis. Microbes Infect 11:956–963
    [Google Scholar]
  10. Brennan P. J., Nikaido H. 1995; The envelope of mycobacteria. Annu Rev Biochem 64:29–63
    [Google Scholar]
  11. Casadio R., Fariselli P., Finocchiaro G., Martelli P. L. 2003; Fishing new proteins in the twilight zone of genomes: the test case of outer membrane proteins in Escherichia coli K12, Escherichia coli O157: H7, and other Gram-negative bacteria. Protein Sci 12:1158–1168
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  13. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honoré N., Garnier T., Churcher C. other authors 2001; Massive gene decay in the leprosy bacillus. Nature 409:1007–1011
    [Google Scholar]
  14. Cosma C. L., Sherman D. R., Ramakrishnan L. 2003; The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol 57:641–676
    [Google Scholar]
  15. Cuff J. A., Barton G. J. 1999; Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34:508–519
    [Google Scholar]
  16. Cuff J. A., Barton G. J. 2000; Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511
    [Google Scholar]
  17. Faller M., Niederweis M., Schulz G. E. 2004; The structure of a mycobacterial outer-membrane channel. Science 303:1189–1192
    [Google Scholar]
  18. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R., Ceric G., Forslund K., Eddy S. R. other authors 2008; The Pfam protein families database. Nucleic Acids Res 36:D281–D288
    [Google Scholar]
  19. Flesselles B., Anand N. N., Remani J., Loosmore S. M., Klein M. H. 1999; Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. FEMS Microbiol Lett 177:237–242
    [Google Scholar]
  20. Garnier T., Eiglmeier K., Camus J. C., Medina N., Mansoor H., Pryor M., Duthoy S., Grondin S., Lacroix C. other authors 2003; The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100:7877–7882
    [Google Scholar]
  21. Hett E. C., Rubin E. J. 2008; Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156
    [Google Scholar]
  22. Hoffmann C., Leis A., Niederweis M., Plitzko J. M., Engelhardt H. 2008; Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105:3963–3967
    [Google Scholar]
  23. Jensen L. J., Kuhn M., Stark M., Chaffron S., Creevey C., Muller J., Doerks T., Julien P., Roth A. other authors 2009; STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412–D416
    [Google Scholar]
  24. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580
    [Google Scholar]
  25. Leversen N. A., de Souza G. A., Malen H., Prasad S., Jonassen I., Wiker H. G. 2009; Evaluation of signal peptide prediction algorithms for identification of mycobacterial signal peptides using sequence data from proteomic methods. Microbiology 155:2375–2383
    [Google Scholar]
  26. Malen H., Berven F. S., Fladmark K. E., Wiker H. G. 2007; Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702–1718
    [Google Scholar]
  27. Marmiesse M., Brodin P., Buchrieser C., Gutierrez C., Simoes N., Vincent V., Glaser P., Cole S. T., Brosch R. 2004; Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150:483–496
    [Google Scholar]
  28. Meya D. B., McAdam K. P. 2007; The TB pandemic: an old problem seeking new solutions. J Intern Med 261:309–329
    [Google Scholar]
  29. Niederweis M. 2008; Nutrient acquisition by mycobacteria. Microbiology 154:679–692
    [Google Scholar]
  30. Niederweis M., Danilchanka O., Huff J., Hoffmann C., Engelhardt H. 2010; Mycobacterial outer membranes: in search of proteins. Trends Microbiol 18:109–116
    [Google Scholar]
  31. Pajon R., Yero D., Lage A., Llanes A., Borroto C. J. 2006; Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates. Tuberculosis (Edinb ) 86:290–302
    [Google Scholar]
  32. Perez-Iratxeta C., Palidwor G., Andrade-Navarro M. A. 2007; Towards completion of the Earth's proteome. EMBO Rep 8:1135–1141
    [Google Scholar]
  33. Remmert M., Linke D., Lupas A. N., Soding J. 2009; HHomp – prediction and classification of outer membrane proteins. Nucleic Acids Res 37:W446–W451
    [Google Scholar]
  34. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  35. Siroy A., Mailaender C., Harder D., Koerber S., Wolschendorf F., Danilchanka O., Wang Y., Heinz C., Niederweis M. 2008; Rv1698 of Mycobacterium tuberculosis represents a new class of channel-forming outer membrane proteins. J Biol Chem 283:17827–17837
    [Google Scholar]
  36. Song L., Hobaugh M. R., Shustak C., Cheley S., Bayley H., Gouaux J. E. 1996; Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866
    [Google Scholar]
  37. Song H., Sandie R., Wang Y., Andrade-Navarro M. A., Niederweis M. 2008; Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb ) 88:526–544
    [Google Scholar]
  38. Stahl C., Kubetzko S., Kaps I., Seeber S., Engelhardt H., Niederweis M. 2001; MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol Microbiol 40:451–464
    [Google Scholar]
  39. Teriete P., Yao Y., Kolodzik A., Yu J., Song H., Niederweis M., Marassi F. M. 2010; Mycobacterium tuberculosis Rv0899 adopts a mixed α/ β-structure and does not form a transmembrane β-barrel. Biochemistry 49:2768–2777
    [Google Scholar]
  40. Tsolaki A. G., Hirsh A. E., DeRiemer K., Enciso J. A., Wong M. Z., Hannan M., Goguet de la Salmoniere Y. O., Aman K., Kato-Maeda M., Small P. M. 2004; Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci U S A 101:4865–4870
    [Google Scholar]
  41. Zhai Y., Saier M. H. Jr 2002; The β-barrel finder (BBF) program, allowing identification of outer membrane β-barrel proteins encoded within prokaryotic genomes. Protein Sci 11:2196–2207
    [Google Scholar]
  42. Zuber B., Chami M., Houssin C., Dubochet J., Griffiths G., Daffe M. 2008; Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040089-0
Loading
/content/journal/micro/10.1099/mic.0.040089-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed