1887

Abstract

During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In , the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 and by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2–V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW–PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040071-0
2011-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/251.html?itemId=/content/journal/micro/10.1099/mic.0.040071-0&mimeType=html&fmt=ahah

References

  1. Aarsman M. E., Piette A., Fraipont C., Vinkenvleugel T. M., Nguyen-Distèche M., den Blaauwen T. 2005; Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 55:1631–1645
    [Google Scholar]
  2. Addinall S. G., Lutkenhaus J. 1996; FtsA is localized to the septum in an FtsZ-dependent manner. J Bacteriol 178:7167–7172
    [Google Scholar]
  3. Alexeeva S., Gadella T. W. J., Verheul J., Verhoeven G. S., den Blaauwen T. 2010; Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 77:384–398
    [Google Scholar]
  4. Begg K. J., Takasuga A., Edwards D. H., Dewar S. J., Spratt B. G., Adachi H., Ohta T., Matsuzawa H., Donachie W. D. 1990; The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J Bacteriol 172:6697–6703
    [Google Scholar]
  5. Bertsche U., Kast T., Wolf B., Fraipont C., Aarsman M. E., Kannenberg K., von Rechenberg M., Nguyen-Distèche M., den Blaauwen T. other authors 2006; Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli . Mol Microbiol 61:675–690
    [Google Scholar]
  6. Buddelmeijer N., Beckwith J. 2004; A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol Microbiol 52:1315–1327
    [Google Scholar]
  7. Clegg R. M. 1992; Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388
    [Google Scholar]
  8. Clegg R. M., Murchie A. I., Zechel A., Carlberg C., Diekmann S., Lilley D. M. 1992; Fluorescence resonance energy transfer analysis of the structure of the four-way DNA junction. Biochemistry 31:4846–4856
    [Google Scholar]
  9. Datta P., Dasgupta A., Singh A. K., Mukherjee P., Kundu M., Basu J. 2006; Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62:1655–1673
    [Google Scholar]
  10. den Blaauwen T., de Pedro M. A., Nguyen-Distèche M., Ayala J. A. 2008; Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 32:321–344
    [Google Scholar]
  11. Derouaux A., Wolf B., Fraipont C., Breukink E., Nguyen-Distèche M., Terrak M. 2008; The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN. J Bacteriol 190:1831–1834
    [Google Scholar]
  12. Di Lallo G., Fagioli M., Barionovi D., Ghelardini P., Paolozzi L. 2003; Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. Microbiology 149:3353–3359
    [Google Scholar]
  13. Errington J. 2003; Dynamic proteins and a cytoskeleton in bacteria. Nat Cell Biol 5:175–178
    [Google Scholar]
  14. Fay A., Meyer P., Dworkin J. 2010; Interactions between late acting proteins required for peptidoglycan synthesis during sporulation. J Mol Biol 399:547–561
    [Google Scholar]
  15. Förster T. 1948; Zwischenmolekulare Energiewanderung und Fluoreszenz [Intermolecular energy migration and fluorescence]. Annalen der Physik 2:55–75
    [Google Scholar]
  16. Gadella T. W. J. 2009; FRET and FLIM imaging techniques. In Laboratory Techniques in Biochemistry and Molecular Biology pp 1–48 Edited by Van der Vliet P. C. Burlington: Academic Press;
    [Google Scholar]
  17. Goehring N. W., Gonzalez M. D., Beckwith J. 2006; Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol Microbiol 61:33–45
    [Google Scholar]
  18. Goffin C., Ghuysen J. M. 1998; Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093
    [Google Scholar]
  19. Henriques A. O., Glaser P., Piggot P. J., Moran C. P. 1998; Control of cell shape and elongation by the rodA gene in Bacillus subtilis . Mol Microbiol 28:235–247
    [Google Scholar]
  20. Höltje J. V. 1998; Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli . Microbiol Mol Biol Rev 62:181–203
    [Google Scholar]
  21. Karasawa S., Araki T., Nagai T., Mizuno H., Miyawaki A. 2004; Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem J 381:307–312
    [Google Scholar]
  22. Karimova G., Dautin N., Ladant D. 2005; Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187:2233–2243
    [Google Scholar]
  23. Lara B., Ayala J. A. 2002; Topological characterization of the essential Escherichia coli cell division protein FtsW. FEMS Microbiol Lett 216:23–32
    [Google Scholar]
  24. Löwe J., Amos L. A. 1998; Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206
    [Google Scholar]
  25. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548
    [Google Scholar]
  26. Matsuhashi M. 1994; Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation. In Bacterial Cell Wall (New Comprehensive Biochemistry vol. 27) pp 55–71 Edited by Ghuysen J. M., Hakenbeck R. Amsterdam: Elsevier;
    [Google Scholar]
  27. Mercer K. L., Weiss D. S. 2002; The Escherichia coli cell division protein FtsW is required to recruit its cognate transpeptidase, FtsI (PBP3), to the division site. J Bacteriol 184:904–912
    [Google Scholar]
  28. Mohammadi T., Ploeger G. E., Verheul J., Comvalius A. D., Martos A., Alfonso C., van Marle J., Rivas G., den Blaauwen T. 2009; The GTPase activity of Escherichia coli FtsZ determines the magnitude of the FtsZ polymer bundling by ZapA in vitro . Biochemistry 48:11056–11066
    [Google Scholar]
  29. Müller P., Ewers C., Bertsche U., Anstett M., Kallis T., Breukink E., Fraipont C., Terrak M., Nguyen-Distèche M., Vollmer W. 2007; The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli . J Biol Chem 282:36394–36402
    [Google Scholar]
  30. Nanninga N. 1998; Morphogenesis of Escherichia coli . Microbiol Mol Biol Rev 62:110–129
    [Google Scholar]
  31. Noirclerc-Savoye M., Le Gouëllec A., Morlot C., Dideberg O., Vernet T., Zapun A. 2005; In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae . Mol Microbiol 55:413–424
    [Google Scholar]
  32. Norris V., den Blaauwen T., Cabin-Flaman A., Doi R. H., Harshey R., Janniere L., Jimenez-Sanchez A., Jin D. J., Levin P. A. other authors 2007; Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71:230–253
    [Google Scholar]
  33. Pastoret S., Fraipont C., den Blaauwen T., Wolf B., Aarsman M. E., Piette A., Thomas A., Brasseur R., Nguyen-Distèche M. 2004; Functional analysis of the cell division protein FtsW of Escherichia coli . J Bacteriol 186:8370–8379
    [Google Scholar]
  34. Piette A., Fraipont C., Den Blaauwen T., Aarsman M. E., Pastoret S., Nguyen-Distèche M. 2004; Structural determinants required to target penicillin-binding protein 3 to the septum of Escherichia coli . J Bacteriol 186:6110–6117
    [Google Scholar]
  35. Sauvage E., Kerff F., Terrak M., Ayala J. A., Charlier P. 2008; The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258
    [Google Scholar]
  36. Shaner N. C., Campbell R. E., Steinbach P. A., Giepmans B. N., Palmer A. E., Tsien R. Y. 2004; Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572
    [Google Scholar]
  37. Suzuki H., Nishimura Y., Hirota Y. 1978; On the process of cellular division in Escherichia coli : a series of mutants of E. coli altered in the penicillin-binding proteins. Proc Natl Acad Sci U S A 75:664–668
    [Google Scholar]
  38. Taschner P. E., Huls P. G., Pas E., Woldringh C. L. 1988; Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB , and ftsE cell division mutants of Escherichia coli during temperature shift experiments. J Bacteriol 170:1533–1540
    [Google Scholar]
  39. Weiss D. S., Chen J. C., Ghigo J. M., Boyd D., Beckwith J. 1999; Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520
    [Google Scholar]
  40. Wissel M. C., Weiss D. S. 2004; Genetic analysis of the cell division protein FtsI (PBP3): amino acid substitutions that impair septal localization of FtsI and recruitment of FtsN. J Bacteriol 186:490–502
    [Google Scholar]
  41. Wissel M. C., Wendt J. L., Mitchell C. J., Weiss D. S. 2005; The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. J Bacteriol 187:320–328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040071-0
Loading
/content/journal/micro/10.1099/mic.0.040071-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error