1887

Abstract

The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In transcription of the and genes requires activation of -RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF–A–C–B–ArcB controls expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein–protein interactions, resulting in the release of the PspA–PspF inhibitory complex and the consequent induction of . In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.040055-0
2010-10-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2920.html?itemId=/content/journal/micro/10.1099/mic.0.040055-0&mimeType=html&fmt=ahah

References

  1. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. ( 2004; ). Image processing with ImageJ. Biophotonics Int 11, 36–42.
    [Google Scholar]
  2. Adams, H., Teertstra, W., Demmers, J., Boesten, R. & Tommassen, J. ( 2003; ). Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 185, 1174–1180.[CrossRef]
    [Google Scholar]
  3. Becker, L. A., Bang, L.-S., Crouch, M.-L. & Fang, F. C. ( 2005; ). Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. Mol Microbiol 56, 1004–1016.[CrossRef]
    [Google Scholar]
  4. Bergler, H., Abraham, D., Aschauer, H. & Turnowsky, F. ( 1994; ). Inhibition of lipid biosynthesis induces the expression of the pspA gene. Microbiology 140, 1937–1944.[CrossRef]
    [Google Scholar]
  5. Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. ( 2009; ). TOPCONS: consensus prediction of membrane protein topology. Nucl Acids Res 37, W455–W468.[CrossRef]
    [Google Scholar]
  6. Bidle, K. A., Kirkland, P. A., Nannen, J. L. & Maupin-Furlow, J. A. ( 2008; ). Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. Microbiology 154, 1436–1443.[CrossRef]
    [Google Scholar]
  7. Bogdanov, M., Heacock, P. N. & Dowhan, W. ( 2002; ). A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21, 2107–2116.[CrossRef]
    [Google Scholar]
  8. Bogdanov, M., Xie, J., Heacock, P. & Dowhan, W. ( 2008; ). To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol 182, 925–935.[CrossRef]
    [Google Scholar]
  9. Bogdanov, M., Xie, J. & Dowhan, W. ( 2009; ). Lipid-protein interactions drive membrane protein topogenesis in accordance with the positive inside rule. J Biol Chem 284, 9637–9641.[CrossRef]
    [Google Scholar]
  10. Brown, J. M. & Shaw, K. J. ( 2003; ). A novel family of Escherichia coli toxin-antitoxin gene pairs. J Bacteriol 185, 6600–6608.[CrossRef]
    [Google Scholar]
  11. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  12. Corpet, F. ( 1988; ). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16, 10881–10890.[CrossRef]
    [Google Scholar]
  13. Darwin, A. J. ( 2005; ). The phage-shock-protein response. Mol Microbiol 57, 621–628.[CrossRef]
    [Google Scholar]
  14. Darwin, A. J. ( 2007; ). Regulation of the phage-shock-protein stress response in Yersinia enterocolitica. In The Genus Yersinia. From Genomics to Function (Advances in Experimental Medicine and Biology, vol. 603), pp. 167–177. Edited by Perry, R. D. & Fetherston, J. D.. New York: Springer.
    [Google Scholar]
  15. Dowhan, W. & Bogdanov, M. ( 2009; ). Lipid-dependent protein topogenesis. Annu Rev Biochem 78, 515–540.[CrossRef]
    [Google Scholar]
  16. Elderkin, S., Jones, S., Schumacher, J., Studholme, D. & Buck, M. ( 2002; ). Mechanism of action of the Escherichia coli phage shock protein PspA in repression of the AAA family transcription factor PspF. J Mol Biol 320, 23–37.[CrossRef]
    [Google Scholar]
  17. Elderkin, S., Bordes, P., Jones, S., Rappas, M. & Buck, M. ( 2005; ). Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 187, 3238–3248.[CrossRef]
    [Google Scholar]
  18. Engl, C., Jovanovic, G., Lloyd, L. J., Murray, H., Ying, L., Errington, J. & Buck, M. ( 2009; ). In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli. Mol Microbiol 73, 382–396.[CrossRef]
    [Google Scholar]
  19. Finn, R. D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A. & other authors ( 2006; ). Pfam: clans, web tools and services. Nucleic Acids Res 34, D247–D251.[CrossRef]
    [Google Scholar]
  20. Gueguen, E., Savitzky, D. C. & Darwin, A. J. ( 2009; ). Analysis of the Yersinia enterocolitica PspBC proteins defines functional domains, essential amino acids and new roles within the phage-shock-protein response. Mol Microbiol 74, 619–633.[CrossRef]
    [Google Scholar]
  21. Guilvout, I., Chami, M., Engel, A., Pugsley, A. P. & Bayan, N. ( 2006; ). Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J 25, 5241–5249.[CrossRef]
    [Google Scholar]
  22. Haggie, P. M. & Verkman, A. S. ( 2008; ). Monomeric CFTR in plasma membrane in live cells revealed by single molecule fluorescence imaging. J Biol Chem 283, 23510–23513.[CrossRef]
    [Google Scholar]
  23. Huvet, M., Toni, T., Tan, H., Jovanovic, G., Engl, C., Buck, M. & Stumpf, M. P. H. ( 2009; ). Model-based evolutionary analysis: the natural history of phage-shock stress response. Biochem Soc Trans 37, 762–767.[CrossRef]
    [Google Scholar]
  24. Javadpour, M. M., Eilers, M., Groesbeek, M. & Smith, S. O. ( 1999; ). Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77, 1609–1618.[CrossRef]
    [Google Scholar]
  25. Jiang, Y., Lee, A., Chen, J., Cadene, M., Chait, B. T. & MacKinnon, R. ( 2002; ). The open pore conformation of potassium channels. Nature 417, 523–526.[CrossRef]
    [Google Scholar]
  26. Joly, N., Burrows, P. C., Engl, C., Jovanovic, G. & Buck, M. ( 2009; ). A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA+ transcription activator protein PspF for negative regulation. J Mol Biol 394, 764–775.[CrossRef]
    [Google Scholar]
  27. Jones, S. E., Lloyd, L. J., Tan, K. K. & Buck, M. ( 2003; ). Secretion defects that activate the phage shock response of Escherichia coli. J Bacteriol 185, 6707–6711.[CrossRef]
    [Google Scholar]
  28. Jovanovic, G., Lloyd, L. J., Stumpf, M. P. H., Mayhew, A. J. & Buck, M. ( 2006; ). Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 281, 21147–21161.[CrossRef]
    [Google Scholar]
  29. Jovanovic, G., Engl, C. & Buck, M. ( 2009; ). Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli. Mol Microbiol 74, 16–28.[CrossRef]
    [Google Scholar]
  30. Kahsay, R. Y., Gao, G. & Liao, L. ( 2005; ). An improved hidden Markov model for transmembrane protein detection and topology prediction and its applications to complete genomes. Bioinformatics 21, 1853–1858.[CrossRef]
    [Google Scholar]
  31. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. ( 1998; ). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 5752–5756.[CrossRef]
    [Google Scholar]
  32. Karimova, G., Dautin, N. & Ladant, D. ( 2005; ). Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187, 2233–2243.[CrossRef]
    [Google Scholar]
  33. Kleerebezem, M., Crielaard, W. & Tommassen, J. ( 1996; ). Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15, 162–171.
    [Google Scholar]
  34. Kobayashi, R., Suzuki, T. & Yoshida, M. ( 2007; ). Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66, 100–109.[CrossRef]
    [Google Scholar]
  35. Kusters, R., Dowhan, W. & de Kruijff, B. ( 1991; ). Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266, 8659–8662.
    [Google Scholar]
  36. Lloyd, L. J., Jones, S. E., Jovanovic, G., Gyaneshwar, P., Rolfe, M. D., Thompson, A., Hinton, J. C. & Buck, M. ( 2004; ). Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem 279, 55707–55714.[CrossRef]
    [Google Scholar]
  37. Maxson, M. E. & Darwin, A. J. ( 2006; ). PspB and PspC of Yersinia enterocolitica are dual function proteins: regulators and effectors of the phage-shock-protein response. Mol Microbiol 59, 1610–1623.[CrossRef]
    [Google Scholar]
  38. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  39. Model, P., Jovanovic, G. & Dworkin, J. ( 1997; ). The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24, 255–261.[CrossRef]
    [Google Scholar]
  40. Rowley, G., Spector, M., Kormanec, J. & Roberts, M. ( 2006; ). Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat Rev Microbiol 4, 383–394.[CrossRef]
    [Google Scholar]
  41. Russel, M. & Kaźmierczak, B. ( 1993; ). Analysis of the structure and subcellular location of filamentous phage pIV. J Bacteriol 175, 3998–4007.
    [Google Scholar]
  42. Tusnády, G. E. & Simon, I. ( 2001; ). The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–850.[CrossRef]
    [Google Scholar]
  43. von Heijne, G. ( 1992; ). Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225, 487–494.[CrossRef]
    [Google Scholar]
  44. Vrancken, K., Van Mellaert, L. & Anné, J. ( 2008; ). Characterization of the Streptomyces lividans PspA response. J Bacteriol 190, 3475–3481.[CrossRef]
    [Google Scholar]
  45. Weiner, L. & Model, P. ( 1994; ). Role of an Escherichia coli stress-response operon in stationary-phase survival. Proc Natl Acad Sci U S A 91, 2191–2195.[CrossRef]
    [Google Scholar]
  46. Weiner, L., Brissette, J. L. & Model, P. ( 1991; ). Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev 5, 1912–1923.[CrossRef]
    [Google Scholar]
  47. Wigneshweraraj, S., Bose, D., Burrows, P. C., Joly, N., Schumacher, J., Rappas, M., Pape, T., Zhang, X., Stockley, P. & other authors ( 2008; ). Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 68, 538–546.[CrossRef]
    [Google Scholar]
  48. Zhang, W., Bogdanov, M., Pi, J., Pittard, A. J. & Dowhan, W. ( 2003; ). Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J Biol Chem 278, 50128–50135.[CrossRef]
    [Google Scholar]
  49. Zhang, W., Campbell, H. A., King, S. C. & Dowhan, W. ( 2005; ). Phosphatidylethanolamine is required for the proper topological organization of the gamma-aminobutyric acid permease (GabP) of Escherichia coli. J Biol Chem 280, 26032–26038.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.040055-0
Loading
/content/journal/micro/10.1099/mic.0.040055-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2920 - 2932

[ PDF, 320 kb], including: K-12 strains and plasmids used in this study Interactions between the PspA and PspC fragments in a Δ strain (A) Production of PspB, PspC and co-expressed PspBC in a Δ strain (MVA13) and (B) production of pIV in Δ cells co-expressing PspBC, detected by Western blotting. (A) Production of pIV in a Δ (MVA13) strain expressing low-level PspC or PspC fragments in the presence of pIV. (B) PspC expression from the chromosome in WT cells in the absence or presence of pIV after Western blotting with anti-PspC. (C) Production of PspC (pAJM2) or PspC fragments on their own or with PspB or PspBC fragments in a Δ strain. (D) Western blot analysis of Triton-X100 fractionated Δ (MVA13) cells expressing PspC or PspC fragments, or PspBC or PspBC fragments. (A) Production of pIV in Δ cells expressing low levels of PspC or PspC mutants (G48A, G74A and LeuZm) co-expressed with PspB in the presence of pIV. (B) Expression of PspC mutants co-expressed with PspB at high level. (C) Western blot analysis of Triton X-100 fractionated Δ (MVA13) cells expressing PspBC or PspBC mutants. Consensus predictions (TOPCONS) for the topology of PspC.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error