1887

Abstract

Phase-variable expression of lipopolysaccharide (LPS) has not been described in detail for strains possessing the virulence-associated epitope recognized by the monoclonal antibody (mAb) 3/1 of the Dresden Panel. About 75 % of cases of community-acquired legionellosis are caused by mAb 3/1-positive strains. In this study, the LPS architecture of the mAb 3/1-positive Corby strain was investigated during its life cycle in broth culture and inside monocytic host cells. During the exponential growth phase in broth, the highly acetylated and therefore strongly hydrophobic mAb 3/1 epitope is expressed continuously, but only 3 % of the bacteria can be detected using mAb 59/1, which recognizes a short-chain variant of the LPS that is less hydrophobic due to missing acetylations of the O-chain. The percentage of mAb 59/1-positive legionellae increases up to 34 % in the post-exponential growth phase. LPS shed in broth during the exponential phase is mAb 59/1-negative, and mAb 3/1-positive components do not possess short-chain molecules. The LPS pattern expressed and shed inside U937 cells and A/J mouse macrophages points to the same regulatory mechanisms. During the so-called ‘pregnant pause’, the period for establishment of the replicative phagosomes, the mAb 3/1-positive LPS is shed into the phagosome and seems to pass through the phagosomal membrane, while mAb 59/1-positive LPS is detectable only on the bacterial surface. After egress of the legionellae into the cytoplasm followed by host cell lysis, individual bacteria are mAb 3/1-positive and mAb 59/1-negative. Intracellularly formed clusters consist of surface-located mAb 3/1-positive bacteria, which are predominantly mAb 59/1-negative. They surround less hydrophobic and therefore closely packed mAb 59/1-positive bacteria. Based on the different degrees of hydrophobicity, bacteria are able to support the expression of two functionally different LPS architectures, namely more hydrophobic LPS for surviving in aerosols and more hydrophilic LPS for close-packing of legionellae inside clusters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039933-0
2010-10-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2953.html?itemId=/content/journal/micro/10.1099/mic.0.039933-0&mimeType=html&fmt=ahah

References

  1. Abu Kwaik, Y. ( 1996; ). The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl Environ Microbiol 62, 2022–2028.
    [Google Scholar]
  2. Balsalobre, C., Silván, J. M., Berglund, S., Mizunoe, Y., Uhlin, B. E. & Wai, S. N. ( 2006; ). Release of the type I secreted alpha-haemolysin via outer membrane vesicles from Escherichia coli. Mol Microbiol 59, 99–112.[CrossRef]
    [Google Scholar]
  3. Belyi, I. F. ( 2002; ). Actin machinery of phagocytic cells: universal target for bacterial attack. Microsc Res Tech 57, 432–440.[CrossRef]
    [Google Scholar]
  4. Berk, S. G., Ting, R. S., Turner, G. W. & Ashburn, R. J. ( 1998; ). Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl Environ Microbiol 64, 279–286.
    [Google Scholar]
  5. Bitar, D. M., Molmeret, M. & Abu Kwaik, Y. ( 2004; ). Molecular and cell biology of Legionella pneumophila. Int J Med Microbiol 293, 519–527.[CrossRef]
    [Google Scholar]
  6. Byrne, B. & Swanson, M. S. ( 1998; ). Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66, 3029–3034.
    [Google Scholar]
  7. Cazalet, C., Jarraud, S., Ghavi-Helm, Y., Kunst, F., Glaser, P., Etienne, J. & Buchrieser, C. ( 2008; ). Multigenome analysis identifies a worldwide distributed epidemic Legionella pneumophila clone that emerged within a highly diverse species. Genome Res 18, 431–441.[CrossRef]
    [Google Scholar]
  8. Fernandez-Moreira, E., Helbig, J. H. & Swanson, M. S. ( 2006; ). Membrane vesicles shed by Legionella pneumophila inhibit fusion to phagosomes with lysosomes. Infect Immun 74, 3285–3295.[CrossRef]
    [Google Scholar]
  9. Garcia-del Portillo, F., Stein, M. A. & Finlay, B. B. ( 1997; ). Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65, 24–34.
    [Google Scholar]
  10. Hammer, B. K., Tateda, E. S. & Swanson, M. S. ( 2002; ). A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol Microbiol 44, 107–118.[CrossRef]
    [Google Scholar]
  11. Helbig, J. H., Lueck, C. P., Knirel, Y. A., Witzleb, W. & Zähringer, U. ( 1995; ). Molecular characterization of a virulence-associated epitope on the lipopolysaccharide of Legionella pneumophila serogroup 1. Epidemiol Infect 115, 71–78.[CrossRef]
    [Google Scholar]
  12. Helbig, J. H., Bernander, S., Castellani Pastoris, M., Etienne, J., Gaia, V., Lauwers, S., Lindsay, D., Lueck, C. P., Marques, T. & other authors ( 2002; ). Pan-European study on culture-proven Legionnaires' disease: distribution of Legionella pneumophila serogroups and monoclonal subgroups. Eur J Clin Microbiol Infect Dis 21, 710–716.[CrossRef]
    [Google Scholar]
  13. Helbig, J. H., Fernandez-Moreira, E., Jacobs, E., Lück, P. C. & Witt, M. ( 2006; ). Lipopolysaccharide architecture of Legionella pneumophila grown in broth and host cells. In Legionella: State of the Art 30 Years after Its Recognition, pp. 261–264. Edited by Cianciotto, N. P., Abu Kwaik, Y., Edelstein, P. H., Fields, B. S., Geary, D. F., Harrison, T. G., Joseph, C. A., Ratcliff, R. M., Stout, J. E. & Swanson, M. S.. Washington, DC: American Society for Microbiology.
    [Google Scholar]
  14. Horstman, A. L. & Kuehn, M. J. ( 2000; ). Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J Biol Chem 275, 12489–12496.[CrossRef]
    [Google Scholar]
  15. Horwitz, M. A. ( 1983; ). Formation of a novel phagosome by the Legionnaires' disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158, 1319–1331.[CrossRef]
    [Google Scholar]
  16. Joshi, A. D., Sturgill-Koszycki, S. & Swanson, J. ( 2001; ). Evidence that Dot-dependent and independent factors isolate the Legionella pneumophila phagosome from the endocytic network in mouse macrophages. Cell Microbiol 3, 99–114.[CrossRef]
    [Google Scholar]
  17. Kooistra, O., Lüneberg, E., Knirel, Y. A., Frosch, M. & Zähringer, U. ( 2002; ). N-Methylation in polylegionaminic acid is associated with the phase-variable epitope of Legionella pneumophila serogroup 1 lipopolysaccharide. Identification of 5-(N,N-dimethylacetimidoyl)amino and 5-acetimidoyl(N-methyl)amino-7-acetamido-3,5,7,9-tetradeoxynon-2-ulosonic acid in the O-chain polysaccharide. Eur J Biochem 269, 560–572.[CrossRef]
    [Google Scholar]
  18. Lück, P. C., Freier, T., Steudel, C., Knirel, Y. A., Lüneberg, E., Zähringer, U. & Helbig, J. H. ( 2001; ). A point mutation in the active site of Legionella pneumophila O-acetyltransferase results in modified lipopolysaccharide but does not influence virulence. Int J Med Microbiol 291, 345–352.[CrossRef]
    [Google Scholar]
  19. Lüneberg, E., Zähringer, U., Knirel, Y. A., Steinmann, D., Hartmann, M., Steinmetz, I., Rohde, M., Köhl, J. & Frosch, M. ( 1998; ). Phase-variable expression of lipopolysaccharide contributes to the virulence of Legionella pneumophila. J Exp Med 188, 49–60.[CrossRef]
    [Google Scholar]
  20. Lüneberg, E., Mayer, B., Daryab, N., Kooistra, O., Zähringer, U., Rohde, M., Swanson, J. & Frosch, M. ( 2001; ). Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Mol Microbiol 39, 1259–1271.[CrossRef]
    [Google Scholar]
  21. Molofsky, A. B. & Swanson, M. S. ( 2004; ). Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53, 29–40.[CrossRef]
    [Google Scholar]
  22. Preston, A. & Maskell, D. J. ( 2002; ). Molecular genetics and role in infection of environmentally regulated lipopolysaccharide expression. Int J Med Microbiol 292, 7–15.[CrossRef]
    [Google Scholar]
  23. Rowbotham, T. J. ( 1986; ). Current views on the relationship between amoeba, legionellae and man. Isr J Med Sci 22, 678–689.
    [Google Scholar]
  24. Swanson, M. S. & Fernandez-Moreira, E. ( 2002; ). A microbial strategy to multiply in macrophages: the pregnant pause. Traffic 3, 170–177.[CrossRef]
    [Google Scholar]
  25. Wintermeyer, E., Rdest, U., Ludwig, B., Debes, A. & Hacker, J. ( 1991; ). Characterization of legiolysin (lly), responsible for haemolytic activity, colour production and fluorescence of Legionella pneumophila. Mol Microbiol 5, 1135–1143.[CrossRef]
    [Google Scholar]
  26. Yu, V. L., Plouffe, J. F., Pastoris, M. C., Stout, J. E., Schousboe, M., Widmer, A., Summersgill, J., File, T., Heath, C. M. & other authors ( 2002; ). Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis 186, 127–128.[CrossRef]
    [Google Scholar]
  27. Zähringer, U., Knirel, Y. A., Lindner, B., Helbig, J. H., Sonesson, A., Marre, R. & Rietschel, E. Th. ( 1995; ). The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 392, 113–139.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039933-0
Loading
/content/journal/micro/10.1099/mic.0.039933-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error