1887

Abstract

BacA proteins play key roles in the chronic intracellular infections of , and within their respective hosts. , and BacA-deficient mutants have increased resistance to the thiazole-modified peptide bleomycin. BacA has been previously hypothesized, but not experimentally verified, to be involved in bleomycin uptake. In this paper, we show that a BacA-dependent mechanism is the major route of bleomycin internalization in . We also determined that the and BacA proteins are functional homologues and that the BacA protein is involved in the uptake of both bleomycin and proline-rich peptides. Our findings also provide evidence that there is a second, BacA-independent minor mechanism for bleomycin internalization in . We determined that the BacA-dependent and -independent mechanisms of bleomycin uptake are energy-dependent, consistent with both mechanisms of bleomycin uptake involving transport systems.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039909-0
2010-09-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2702.html?itemId=/content/journal/micro/10.1099/mic.0.039909-0&mimeType=html&fmt=ahah

References

  1. Alunni B., Kevei Z., Redondo-Nieto M., Kondorosi A., Mergaert P., Kondorosi E.. 2007; Genomic organisation and evolutionary insights on GRP and NCR genes, two large nodule-specific gene families in Medicago truncatula. Mol Plant Microbe Interact20:1138–1148
    [Google Scholar]
  2. Aouida M., Leduc A., Wang H., Ramotar D.. 2004; Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in Saccharomyces cerevisiae. Biochem J384:47–58
    [Google Scholar]
  3. Aouida M., Leduc A., Poulin R., Ramotar D.. 2005; AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem280:24267–24276
    [Google Scholar]
  4. Benincasa M., Scocchi M., Podda E., Skerlavaj B., Dolzani L., Gennaro R.. 2004; Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides25:2055–2061
    [Google Scholar]
  5. Benincasa M., Pacor S., Gennaro R., Scocchi M.. 2009; Rapid and reliable detection of antimicrobial peptide penetration into Gram-negative bacteria based on fluorescence quenching. Antimicrob Agents Chemother53:3501–3504
    [Google Scholar]
  6. Davidson A. L., Chen J.. 2004; ATP-binding cassette transporters in bacteria. Annu Rev Biochem73:241–268
    [Google Scholar]
  7. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X.-W., Finlay D. R., Guiney D., Helinski D. R.. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153
    [Google Scholar]
  8. Domenech P., Kobayashi H., Levier K., Walker G. C., Barry C. E. III. 2009; BacA: an ABC transporter involved in maintenance of chronic murine infections with Mycobacterium tuberculosis. J Bacteriol191:477–485
    [Google Scholar]
  9. Ferguson G. P., Battista J. R., Lee A. T., Booth I. R.. 2000; Protection of the DNA during the exposure of Escherichia coli cells to a toxic metabolite: the role of the KefB and KefC potassium channels. Mol Microbiol35:113–122
    [Google Scholar]
  10. Ferguson G. P., Roop R. M. II, Walker G. C.. 2002; Deficiency of Sinorhizobium meliloti bacA mutant in alfalfa symbiosis correlates with alteration of cell envelope. J Bacteriol184:5625–5632
    [Google Scholar]
  11. Ferguson G. P., Datta A., Baumgartner J., Roop R. M. II, Carlson R. W., Walker G. C.. 2004; Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci U S A101:5012–5017
    [Google Scholar]
  12. Ferguson G. P., Datta A., Carlson R. W., Walker G. C.. 2005; Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol56:68–80
    [Google Scholar]
  13. Ferguson G. P., Jansen A., Marlow V. L., Walker G. C.. 2006; BacA-mediated bleomycin sensitivity in Sinorhizobium meliloti is independent of the unusual lipid A modification. J Bacteriol188:3143–3148
    [Google Scholar]
  14. Finan T. M., Kunkel B., de Vos G. F., Signer E. R.. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol167:66–72
    [Google Scholar]
  15. Frank R. W., Gennaro R., Schneider K., Przybylski M., Romeo D.. 1990; Amino acid sequences of two proline-rich bactenecins. Antimicrobial peptides of bovine neutrophils. J Biol Chem265:18871–18874
    [Google Scholar]
  16. Franz D. R., Jahrling P. B., Friedlander A. M., McClain D. J., Hoover D. L., Bryne W. R., Pavlin J. A., Christopher G. W., Eitzen E. M. Jr. 1997; Clinical recognition and management of patients exposed to biological warfare agents. JAMA278:399–411
    [Google Scholar]
  17. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A.. other authors 2001; The composite genome of the legume symbiont Sinorhizobium meliloti. Science293:668–672
    [Google Scholar]
  18. Gennaro R., Zanetti M., Benincasa M., Podda E., Miani M.. 2002; Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr Pharm Des8:763–778
    [Google Scholar]
  19. Gibson K. E., Kobayashi H., Walker G. C.. 2008; Molecular determinants of a symbiotic chronic infection. Annu Rev Genet42:413–441
    [Google Scholar]
  20. Glazebrook J., Ichige A., Walker G. C.. 1993; A Rhizobium meliloti homolog of the Escherichia coli peptide-antibiotic transport protein SbmA is essential for bacteroid development. Genes Dev7:1485–1497
    [Google Scholar]
  21. Grzesiuk E., Janion C.. 1996; MMS-induced mutagenesis and DNA repair in Escherichia coli dnaQ49: contribution of UmuD′ to DNA repair. Mutat Res362:147–154
    [Google Scholar]
  22. Haag A. F., Wehmeier S., Beck S., Marlow V. L., Fletcher V., James E. K., Ferguson G. P.. 2009; The Sinorhizobium meliloti LpxXL and AcpXL proteins play important roles in bacteroid development within alfalfa. J Bacteriol191:4681–4686
    [Google Scholar]
  23. Ichige A., Walker G. C.. 1997; Genetic analysis of the Rhizobium meliloti bacA gene: functional interchangeability with the Escherichia coli sbmA gene and phenotypes of mutants. J Bacteriol179:209–216
    [Google Scholar]
  24. Igarashi K., Kashiwagi K.. 1999; Polyamine transport in bacteria and yeast. Biochem J344:633–642
    [Google Scholar]
  25. Imlay J. A., Linn S.. 1988; DNA damage and oxygen radical toxicity. Science240:1302–1309
    [Google Scholar]
  26. Johnson J. L.. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology pp655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Kreig N. R.. Washington, DC: American Society of Microbiology;
    [Google Scholar]
  27. Jones K. M., Kobayashi H., Davies B. W., Taga M. E., Walker G. C.. 2007; How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol5:619–633
    [Google Scholar]
  28. Kane S. A., Hecht S. M.. 1994; Polynucleotide recognition and degradation by bleomycin. Prog Nucleic Acid Res Mol Biol49:313–352
    [Google Scholar]
  29. Laviña M., Pugsley A. P., Moreno F.. 1986; Identification, mapping, cloning and characterization of a gene ( sbmA) required for microcin B17 action on Escherichia coli K12. J Gen Microbiol132:1685–1693
    [Google Scholar]
  30. Leigh J. A., Signer E. R., Walker G. C.. 1985; Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A82:6231–6235
    [Google Scholar]
  31. LeVier K., Walker G. C.. 2001; Genetic analysis of the Sinorhizobium meliloti BacA protein: differential effects of mutations on phenotypes. J Bacteriol183:6444–6453
    [Google Scholar]
  32. LeVier K., Phillips R. W., Grippe V. K., Roop R. M. II, Walker G. C.. 2000; Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science287:2492–2493
    [Google Scholar]
  33. Lim S. T., Jue C. K., Moore C. W., Lipke P. N.. 1995; Oxidative cell wall damage mediated by bleomycin-Fe(II) in Saccharomyces cerevisiae. J Bacteriol177:3534–3539
    [Google Scholar]
  34. Marlow V. L., Haag A. F., Kobayashi H., Fletcher V., Scocchi M., Walker G. C., Ferguson G. P.. 2009; Essential role for the BacA protein in the uptake of a truncated eukaryotic peptide in Sinorhizobium meliloti. J Bacteriol191:1519–1527
    [Google Scholar]
  35. Mattiuzzo M., Bandiera A., Gennaro R., Benincasa M., Pacor S., Antcheva N., Scocchi M.. 2007; Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol Microbiol66:151–163
    [Google Scholar]
  36. McLaughlin S.. 1972; The mechanism of action of DNP on phospholipid bilayer membranes. J Membr Biol9:361–372
    [Google Scholar]
  37. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M.. 1982; Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn 5 mutagenesis. J Bacteriol149:114–122
    [Google Scholar]
  38. Mergaert P., Nikovics K., Keleman Z., Maunoury N., Vaubert D., Kondorosi A., Kondorosi E.. 2003; A novel family of Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol132:161–173
    [Google Scholar]
  39. Mergaert P., Uchiumi T., Alunni B., Evanno G., Cheron A., Catrice O., Mausett A. E., Barloy-Hubler F., Galibert F.. other authors 2006; Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proc Natl Acad Sci U S A103:5230–5235
    [Google Scholar]
  40. Otsuji N., Murayama I.. 1972; Deoxyribonucleic acid damage by monofunctional mitomycins and its repair in Escherichia coli. J Bacteriol109:475–483
    [Google Scholar]
  41. Pedreno E., Lopez-Contreras A. J., Cremades A., Penafiel R.. 2005; Protecting or promoting effects of spermine on DNA strand breakage induced by iron or copper ions as a function of metal concentration. J Inorg Biochem99:2074–2080
    [Google Scholar]
  42. Raetz C. R., Whitfield C.. 2002; Lipopolysaccharide endotoxins. Annu Rev Biochem71:635–700
    [Google Scholar]
  43. Rivas-Santiago B., Serrano C. J., Enciso-Moreno J. A.. 2009; Susceptibility to infectious diseases based on antimicrobial peptide production. Infect Immun77:4690–4695
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. 1982; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Scocchi M., Mattiuzzo M., Benincasa M., Antcheva N., Tossi A., Gennaro R.. 2008; Investigating the mode of action of proline-rich antimicrobial peptides using a genetic approach: a tool to identify new bacterial targets amenable to the design of novel antibiotics. Methods Mol Biol494:161–176
    [Google Scholar]
  46. Sharypova L. A., Niehaus K., Scheidle H., Holst O., Becker A.. 2003; Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide. J Biol Chem278:12946–12954
    [Google Scholar]
  47. Umezawa H., Maeda K., Takeuchi T., Okami Y.. 1966; New antibiotics, bleomycin A and B. J Antibiot (Tokyo19:200–209
    [Google Scholar]
  48. Van de Velde W., Zehirov G., Szatmari A., Debreczeny M., Ishihara H., Kevei Z., Farkas A., Mikulass K., Nagy A.. other authors 2010; Plant peptides govern terminal differentiation of bacteria in symbiosis. Science327:1122–1126
    [Google Scholar]
  49. Wells D. H., Long S. R.. 2002; The Sinorhizobium meliloti stringent response affects multiple aspects of symbiosis. Mol Microbiol43:1115–1127
    [Google Scholar]
  50. Wilson K.. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Green Publishing & Wiley-Interscience;
    [Google Scholar]
  51. Yorgey P., Lee J., Kordel J., Vivas E., Warner P., Jebaratnam D., Kolter R.. 1994; Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc Natl Acad Sci U S A91:4519–4523
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039909-0
Loading
/content/journal/micro/10.1099/mic.0.039909-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error