1887

Abstract

In an alternative to biosynthesis of nucleotides, most organisms are capable of exploiting exogenous nucleotide sources. In order to do so, the nucleotide precursors must pass the membrane, which requires the presence of transporters. Normally, phosphorylated compounds are not subject to transport, and the utilization of nucleotides is dependent on exogenous phosphatases. The composition of transporters with specificity for purine and pyrimidine nucleosides and nucleobases is subject to variation. The ability of to transport different nucleosides across the cell membrane was characterized at both genetic and physiological level, using mutagenesis and by measuring the growth and uptake of nucleosides in the different mutants supplemented with different nucleosides. Two high affinity transporters were identified: BmpA–NupABC was shown to be an ABC transporter with the ability to actively transport all common nucleosides, whereas UriP was shown to be responsible for the uptake of only uridine and deoxyuridine. Interestingly, the four genes encoding the ABC transporter were found at different positions on the chromosome. The gene was separated from the operon by 60 kb. Moreover, was subject to regulation by purine availability, whereas the operon was constitutively expressed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039818-0
2010-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3148.html?itemId=/content/journal/micro/10.1099/mic.0.039818-0&mimeType=html&fmt=ahah

References

  1. Andersen P. S., Jansen P. J., Hammer K. 1994; Two different dihydroorotate dehydrogenases in Lactococcus lactis. J Bacteriol 176:3975–3982
    [Google Scholar]
  2. Andersen P. S., Martinussen J., Hammer K. 1996; Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis. J Bacteriol 178:5005–5012
    [Google Scholar]
  3. Beyer N. H., Roepstorff P., Hammer K., Kilstrup M. 2003; Proteome analysis of the purine stimulon from Lactococcus lactis. Proteomics 3:786–797
    [Google Scholar]
  4. Brinkrolf K., Ploger S., Solle S., Brune I., Nentwich S. S., Huser A. T., Kalinowski J., Puhler A., Tauch A. 2008; The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology 154:1068–1081
    [Google Scholar]
  5. Brøndsted L., Hammer K. 1999; Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901–1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl Environ Microbiol 65:752–758
    [Google Scholar]
  6. Defoor E., Kryger M. B., Martinussen J. 2007; The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 153:3645–3659
    [Google Scholar]
  7. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  8. Handschumacher R. E. 1963; 5-Azaorotic acid and related inhibitors of the synthesis de novo of pyrimidine nucleotides. Cancer Res 23:634–639
    [Google Scholar]
  9. Holo H., Nes I. F. 1995; Transformation of Lactococcus by electroporation. Methods Mol Biol 47:195–199
    [Google Scholar]
  10. Jensen P. R., Hammer K. 1993; Minimal requirements for exponential growth of Lactococcus lactis. Appl Environ Microbiol 59:4363–4366
    [Google Scholar]
  11. Johansen E., Kibenich A. 1992; Characterization of Leuconostoc isolates from commercial mixed strain mesophilic starter cultures. J Dairy Sci 75:1186–1191
    [Google Scholar]
  12. Johansen L. E., Nygaard P., Lassen C., Agerso Y., Saxild H. H. 2003; Definition of a second Bacillus subtilis pur regulon comprising the pur and xptpbuX operons pluspbuG, nupG ( yxjA), and pbuE ( ydhL). J Bacteriol 185:5200–5209
    [Google Scholar]
  13. Kilstrup M., Hammer K. 2000; Short communication: salt extends the upper temperature limit for growth of Lactococcus lactis ssp. cremoris on solid M17 medium. J Dairy Sci 83:1448–1450
    [Google Scholar]
  14. Kilstrup M., Martinussen J. 1998; A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. J Bacteriol 180:3907–3916
    [Google Scholar]
  15. Kilstrup M., Jessing S. G., Wichmand-Jorgensen S. B., Madsen M., Nilsson D. 1998; Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol 180:3900–3906
    [Google Scholar]
  16. Kilstrup M., Hammer K., Ruhdal J. P., Martinussen J. 2005; Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590
    [Google Scholar]
  17. Le Bourgeois P., Lautier M., Mata M., Ritzenthaler P. 1992; New tools for the physical and genetic mapping of Lactococcus strains. Gene 111:109–114
    [Google Scholar]
  18. Maguin E., Prevost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  19. Martinussen J., Hammer K. 1994; Cloning and characterization of upp, a gene encoding uracil phosphoribosyltransferase from Lactococcus lactis. J Bacteriol 176:6457–6463
    [Google Scholar]
  20. Martinussen J., Hammer K. 1995; Powerful methods to establish chromosomal markers in Lactococcus lactis – an analysis of pyrimidine salvage pathway mutants obtained by positive selections. Microbiology 141:1883–1890
    [Google Scholar]
  21. Martinussen J., Hammer K. 1998; The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically. J Bacteriol 180:4380–4386
    [Google Scholar]
  22. Martinussen J., Sørensen C. 2005; Purine and cytidine nucleoside uptake in Lactococcus lactis share a common transporter of the ABC type. 8th Symposium on lactic acid bacteria, Eegmond an Zee The Netherlands:
    [Google Scholar]
  23. Martinussen J., Andersen P. S., Hammer K. 1994; Nucleotide metabolism in Lactococcus lactis: salvage pathways of exogenous pyrimidines. J Bacteriol 176:1514–1516
    [Google Scholar]
  24. Martinussen J., Schallert J., Andersen B., Hammer K. 2001; The pyrimidine operon pyrRPBcarA from Lactococcus lactis. J Bacteriol 183:2785–2794
    [Google Scholar]
  25. Martinussen J., Wadskov-Hansen S. L., Hammer K. 2003; Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. J Bacteriol 185:1503–1508
    [Google Scholar]
  26. Nilsson D., Kilstrup M. 1998; Cloning and expression of the Lactococcus lactis purDEK genes, required for growth in milk. Appl Environ Microbiol 64:4321–4327
    [Google Scholar]
  27. O'Sullivan W. J., Ketley K. 1980; Biosynthesis of uridine monophosphate in Plasmodium berghei. Ann Trop Med Parasitol 74:109–114
    [Google Scholar]
  28. Saier M. H. Jr 2000; A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411
    [Google Scholar]
  29. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Sping Harbor, NY: Cold Spring Habor Laboratory;
    [Google Scholar]
  30. Saxild H. H., Andersen L. N., Hammer K. 1996; Dra– nupCpdp operon of Bacillus subtilis: nucleotide sequence, induction by deoxyribonucleosides, and transcriptional regulation by the deoR-encoded DeoR repressor protein. J Bacteriol 178:424–434
    [Google Scholar]
  31. Saxild H. H., Brunstedt K., Nielsen K. I., Jarmer H., Nygaard P. 2001; Definition of the Bacillus subtilis PurR operator using genetic and bioinformatic tools and expansion of the PurR regulon with glyA,guaC, pbuG, xptpbuX, yqhZ–folD, and pbuO. J Bacteriol 183:6175–6183
    [Google Scholar]
  32. Solem C., Defoor E., Jensen P. R., Martinussen J. 2008; Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol 74:4772–4775
    [Google Scholar]
  33. Terzaghi B. E., Sandine W. E. 1975; Improved medium for lactic Streptococci and their bacteriophages. Appl Microbiol 29:807–813
    [Google Scholar]
  34. Webb A. J., Hosie A. H. 2006; A member of the second carbohydrate uptake subfamily of ATP-binding cassette transporters is responsible for ribonucleoside uptake in Streptococcus mutans. J Bacteriol 188:8005–8012
    [Google Scholar]
  35. Wegmann U., O'Connell-Motherway M., Zomer A., Buist G., Shearman C., Canchaya C., Ventura M., Goesmann A., Gasson M. J. other authors 2007; Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039818-0
Loading
/content/journal/micro/10.1099/mic.0.039818-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error