1887

Abstract

The insect epicuticle or waxy layer comprises a heterogeneous mixture of lipids that include abundant levels of long-chain alkanes, alkenes, wax esters and fatty acids. This structure represents the first barrier against microbial attack and for broad-host-range insect pathogens, such as , it is the initial interface mediating the host–pathogen interaction, since these organisms do not require any specialized mode of entry and infect target hosts via the cuticle. is able to grow on straight chain alkanes up to n-C as a sole source of carbon and energy. The cDNA and genomic sequences, including putative regulatory elements, for eight cytochrome P450 enzymes, postulated to be involved in alkane and insect epicuticle degradation, were isolated and characterized. Expression studies using a range of alkanes as well as an insect-derived epicuticular extract from the blood-sucking bug revealed a differential expression pattern for the P450 genes examined, and suggest that contains a series of hydrocarbon-assimilating enzymes with overlapping specificity in order to target the surface lipids of insect hosts. Phylogenetic analysis of the translated ORFs of the sequences revealed that the enzyme which displayed the highest levels of induction on both alkanes and the insect epicuticular extract represents the founding member of a new cytochrome P450 family, with three of the other sequences assigned as the first members of new P450 subfamilies. The remaining four proteins clustered with known P450 families whose members include alkane monooxygenases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039735-0
2010-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2549.html?itemId=/content/journal/micro/10.1099/mic.0.039735-0&mimeType=html&fmt=ahah

References

  1. Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Horiuchi, T. & Yoshida, Y. ( 1996; ). Sterol 14-demethylase P450 (P45014DM*) is one of the most ancient and conserved P450 species. J Biochem 119, 926–933.[CrossRef]
    [Google Scholar]
  2. Blomquist, G. J., Nelson, D. R. & De Renobales, M. ( 1987; ). Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch Insect Biochem Physiol 6, 227–265.[CrossRef]
    [Google Scholar]
  3. Cho, E. M., Boucias, D. & Keyhani, N. O. ( 2006a; ). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein. Microbiology 152, 2855–2864.[CrossRef]
    [Google Scholar]
  4. Cho, E. M., Liu, L., Farmerie, W. & Keyhani, N. O. ( 2006b; ). EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. I. Evidence for stage-specific gene expression in aerial conidia, in vitro blastospores and submerged conidia. Microbiology 152, 2843–2854.[CrossRef]
    [Google Scholar]
  5. Crespo, R., Juárez, M. P. & Cafferata, L. F. R. ( 2000; ). Biochemical interaction between entomopathogenous fungi and their insect-host-like hydrocarbons. Mycologia 92, 528–536.[CrossRef]
    [Google Scholar]
  6. Crespo, R., Juárez, M. P., Dal Bello, G. M., Padín, S., Fernández, G. C. & Pedrini, N. ( 2002; ). Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. BioControl 47, 685–696.[CrossRef]
    [Google Scholar]
  7. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V. & other authors ( 2008; ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465–W469.[CrossRef]
    [Google Scholar]
  8. Eley, K. L., Halo, L. M., Song, Z. S., Powles, H., Cox, R. J., Bailey, A. M., Lazarus, C. M. & Simpson, T. J. ( 2007; ). Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. ChemBioChem 8, 289–297.[CrossRef]
    [Google Scholar]
  9. Figueiras, A. N. L., Girotti, J. R., Mijailovsky, S. J. & Juarez, M. P. ( 2009; ). Epicuticular lipids induce aggregation in Chagas disease vectors. Parasit Vectors 2, 8 [CrossRef]
    [Google Scholar]
  10. Fujii, T., Nakamura, K., Shibuya, S., Tanase, S., Gotoh, O., Ogawa, T. & Fukuda, H. ( 1997; ). Structural characterization of the gene and corresponding cDNA for the cytochrome P450rm from Rhodotorula minuta which catalyzes formation of isobutene and 4-hydroxylation of benzoate. Mol Gen Genet 256, 115–120.[CrossRef]
    [Google Scholar]
  11. Gotoh, O. ( 1993; ). Structure of P-450 genes in cytochrome P-450. In Cytochrome P-450, 2nd end, pp. 207–223. Edited by T. Omura, Y. Ishimura & Y. Fujii-Kuriyama. Tokyo: Kodansha.
  12. Graber, J. H., Cantor, C. R., Mohr, S. C. & Smith, T. F. ( 1999; ). Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res 27, 888–894.[CrossRef]
    [Google Scholar]
  13. Guengerich, F. P. ( 2001; ). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14, 611–650.[CrossRef]
    [Google Scholar]
  14. Halo, L. M., Heneghan, M. N., Yakasai, A. A., Song, Z., Williams, K., Bailey, A. M., Cox, R. J., Lazarus, C. M. & Simpson, T. J. ( 2008; ). Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana. J Am Chem Soc 130, 17988–17996.[CrossRef]
    [Google Scholar]
  15. Hamilton, R., Watanabe, C. K. & Deboer, H. A. ( 1987; ). Compilation and comparison of the sequence context around the AUG start codons in Saccharomyces cerevisiae messenger-RNAs. Nucleic Acids Res 15, 3581–3593.[CrossRef]
    [Google Scholar]
  16. Holder, D. J. & Keyhani, N. O. ( 2005; ). Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71, 5260–5266.[CrossRef]
    [Google Scholar]
  17. Holder, D. J., Kirkland, B. H., Lewis, M. W. & Keyhani, N. O. ( 2007; ). Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153, 3448–3457.[CrossRef]
    [Google Scholar]
  18. Iida, T., Ohta, A. & Takagi, M. ( 1998; ). Cloning and characterization of an n-alkane-inducible cytochrome P450 gene essential for n-decane assimilation by Yarrowia lipolytica. Yeast 14, 1387–1397.[CrossRef]
    [Google Scholar]
  19. Juarez, P. ( 1994; ). Inhibition of cuticular lipid synthesis and its effect on insect survival. Arch Insect Biochem Physiol 25, 177–191.[CrossRef]
    [Google Scholar]
  20. Juarez, M. P. & Fernandez, G. C. ( 2007; ). Cuticular hydrocarbons of triatomines. Comp Biochem Physiol A Mol Integr Physiol 147, 711–730.[CrossRef]
    [Google Scholar]
  21. Lewis, M. W., Robalino, I. V. & Keyhani, N. O. ( 2009; ). Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology 155, 3110–3120.[CrossRef]
    [Google Scholar]
  22. Lottermoser, K., Schunck, W. H. & Asperger, O. ( 1996; ). Cytochromes P450 of the sophorose lipid-producing yeast Candida apicola: heterogeneity and polymerase chain reaction-mediated cloning of two genes. Yeast 12, 565–575.[CrossRef]
    [Google Scholar]
  23. Matsuzaki, F. & Wariishi, H. ( 2005; ). Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 334, 1184–1190.[CrossRef]
    [Google Scholar]
  24. Napolitano, R. & Juarez, M. P. ( 1997; ). Entomopathogenous fungi degrade epicuticular hydrocarbons of Triatoma infestans. Arch Biochem Biophys 344, 208–214.[CrossRef]
    [Google Scholar]
  25. Ohkuma, M., Muraoka, S., Tanimoto, T., Fujii, M., Ohta, A. & Takagi, M. ( 1995; ). Cyp52 (Cytochrome-P450alk) multigene family in Candida maltosa – identification and characterization of 8 members. DNA Cell Biol 14, 163–173.[CrossRef]
    [Google Scholar]
  26. Ortiz de Montellano, P. R. ( 2005; ). Cytochrome P450: Structure, Mechanism, and Biochemistry, pp. 689. New York: Kluwer Academic/Plenum.
  27. Pedrini, N., Crespo, R. & Juarez, M. P. ( 2007; ). Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol 146, 124–137.[CrossRef]
    [Google Scholar]
  28. Pedrini, N., Mijailovsky, S. J., Girotti, J. R., Stariolo, R., Cardozo, R. M., Gentile, A. & Juarez, M. P. ( 2009; ). Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl Trop Dis 3, e434 [CrossRef]
    [Google Scholar]
  29. Sanglard, D. & Loper, J. C. ( 1989; ). Characterization of the alkane-inducible cytochrome-P450 (P450alk) gene from the yeast Candida tropicalis – identification of a new P450 gene family. Gene 76, 121–136.[CrossRef]
    [Google Scholar]
  30. Scheller, U., Zimmer, T., Becher, D., Schauer, F. & Schunck, W. H. ( 1998; ). Oxygenation cascade in conversion of n-alkanes to alpha, omega-dioic acids catalyzed by cytochrome p450 52A3. J Biol Chem 273, 32528–32534.[CrossRef]
    [Google Scholar]
  31. Seghezzi, W., Sanglard, D. & Fiechter, A. ( 1991; ). Characterization of a 2nd alkane-inducible cytochrome-P450 encoding gene, Cyp52a2, from Candida tropicalis. Gene 106, 51–60.[CrossRef]
    [Google Scholar]
  32. Seghezzi, W., Meili, C., Ruffiner, R., Kuenzi, R., Sanglard, D. & Fiechter, A. ( 1992; ). Identification and characterization of additional members of the cytochrome-P450 multigene family Cyp52 of Candida tropicalis. DNA Cell Biol 11, 767–780.[CrossRef]
    [Google Scholar]
  33. Shen, Y., Ji, G., Haas, B. J., Wu, X., Zheng, J., Reese, G. J. & Li, Q. Q. ( 2008; ). Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation. Nucleic Acids Res 36, 3150–3161.[CrossRef]
    [Google Scholar]
  34. Swanson, H. I. ( 2002; ). DNA binding and protein interactions of the AhR/ARNT heterodimer that facilitate gene activation. Chem Biol Interact 141, 63–76.[CrossRef]
    [Google Scholar]
  35. Tanaka, A. & Fukui, S. ( 1989; ). Metabolism of n-alkanes. In The Yeast, pp. 261–287. Edited by A. Tanaka & S. Fukui. New York: Academic Press.
  36. Tanaka, A. & Ueda, M. ( 1993; ). Assimilation of alkanes by yeasts: functions and biogenesis of peroxisomes. Mycol Res 97, 1025–1044.[CrossRef]
    [Google Scholar]
  37. Treger, J. M., Magee, T. R. & McEntee, K. ( 1998; ). Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem Biophys Res Commun 243, 13–19.[CrossRef]
    [Google Scholar]
  38. Tsuchiya, Y., Nakajima, M. & Yokoi, T. ( 2003; ). Critical enhancer region to which AhR/ARNT and Sp1 bind in the human CYP1B1 gene. J Biochem 133, 583–592.[CrossRef]
    [Google Scholar]
  39. van Beilen, J. B., Li, Z., Duetz, W. A., Smits, T. H. M. & Witholt, B. ( 2003; ). Diversity of alkane hydroxylase systems in the environment. Oil & Gas Sci Technol – Rev IFP 58, 427–440.[CrossRef]
    [Google Scholar]
  40. Wanchoo, A., Lewis, M. W. & Keyhani, N. O. ( 2009; ). Lectin mapping reveals stage-specific display of surface carbohydrates in in vitro and haemolymph-derived cells of the entomopathogenic fungus Beauveria bassiana. Microbiology 155, 3121–3133.[CrossRef]
    [Google Scholar]
  41. Yadav, J. S. & Loper, J. C. ( 1999; ). Multiple P450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii. Gene 226, 139–146.[CrossRef]
    [Google Scholar]
  42. Yadav, J. S., Soellner, M. B., Loper, J. C. & Mishra, P. K. ( 2003; ). Tandem cytochrome P450 monooxygenase genes and splice variants in the white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis, and regulation of differential expression. Fungal Genet Biol 38, 10–21.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039735-0
Loading
/content/journal/micro/10.1099/mic.0.039735-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error