1887

Abstract

Unlike in higher organisms, selenium is not essential for growth in . In this species, it causes toxic effects at high concentrations. In the present study, we show that when supplied as selenite to yeast cultures growing under fermentative metabolism, its effects can be dissected into two death phases. From the time of initial treatment, it causes loss of membrane integrity and genotoxicity. Both effects occur at higher levels in mutants lacking Grx1p and Grx2p than in wild-type cells, and are reversed by expression of a cytosolic version of the membrane-associated Grx7p glutaredoxin. Grx7p can also rescue the high levels of protein carbonylation damage that occur in selenite-treated cultures of the mutant. After longer incubation times, selenite causes abnormal nuclear morphology and the appearance of TUNEL-positive cells, which are considered apoptotic markers in yeast cells. This effect is independent of Grx1p and Grx2p. Therefore, the protective role of the two glutaredoxins is restricted to the initial stages of selenite treatment. Lack of Yca1p metacaspase or of a functional mitochondrial electron transport chain only moderately diminishes apoptotic-like death by selenite. In contrast, selenite-induced apoptosis is dependent on the apoptosis-inducing factor Aif1p. In the absence of the latter, intracellular protein carbonylation is reduced after prolonged selenite treatment, supporting the supposition that part of the oxidative damage is contributed by apoptotic cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039719-0
2010-09-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2608.html?itemId=/content/journal/micro/10.1099/mic.0.039719-0&mimeType=html&fmt=ahah

References

  1. Apostolova N., Cervera A. M., Victor V. M., Cadenas S., Sanjuán-Pla A., Alvarez-Barrientos A., Espulgues J. V., McCreath K. J.. 2006; Loss of apoptosis-inducing factor leads to an increase in reactive oxygen species, and an impairment of respiration that can be reversed by antioxidants. Cell Death Differ13:354–357
    [Google Scholar]
  2. Bellí G., Garí E., Piedrafita L., Aldea M., Herrero E.. 1998; An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res26:942–947
    [Google Scholar]
  3. Benov L., Sztejnberg L., Fridovich I.. 1998; Critical evaluation of the use of hydroethidine as a measure of superoxide anion. Free Radic Biol Med25:826–831
    [Google Scholar]
  4. Bushweller J. H., Aslund F., Wuthrich K., Holmgren A.. 1992; Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14-S) and its mixed disulfide with glutathione. Biochemistry31:9288–9293
    [Google Scholar]
  5. Cabiscol E., Piulats E., Echave P., Herrero E., Ros J.. 2000; Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem275:27393–27398
    [Google Scholar]
  6. Cande C., Cecconi F., Dessen P., Kroemer G.. 2002; Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death. J Cell Sci115:4727–4734
    [Google Scholar]
  7. Chen J. J., Boylan L. M., Wu C. K., Spallholz J. E.. 2007; Oxidation of glutathione and superoxide generation by inorganic and organic selenium compounds. Biofactors31:55–66
    [Google Scholar]
  8. Churbanova I. Y., Sevrioukova I. F.. 2008; Redox-dependent changes in molecular properties of mitochondrial apoptosis-inducing factor. J Biol Chem283:5622–5631
    [Google Scholar]
  9. Collinson E. J., Wheeler G. L., Garrido E. O., Avery A. M., Avery S. V., Grant C. M.. 2002; The yeast glutaredoxins are active as glutathione peroxidases. J Biol Chem277:16712–16717
    [Google Scholar]
  10. Du L., Yu Y., Chen J., Liu Y., Xia Y., Chen Q., Liu X.. 2007; Arsenic induces caspase- and mitochondria-mediated apopotosis in Saccharomyces cerevisiae. FEM Yeast Res7:860–865
    [Google Scholar]
  11. Dudgeon D. D., Zhang N., Ositelu O. O., Kim H., Cunningham K. W.. 2008; Nonapoptotic death of Saccharomyces cerevisiae cells that is stimulated by Hsp90 and inhibited by calcineurin and Cmk2 in response to endoplasmic reticulum stresses. Eukaryot Cell7:2037–2051
    [Google Scholar]
  12. Eckers E., Bien M., Stroobant V., Herrmann J. M., Deponte M.. 2009; Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: the catalytic redox mechanism redux. Biochemistry48:1410–1423
    [Google Scholar]
  13. Garcerá A., Barreto L., Piedrafita L., Tamarit J., Herrero E.. 2006; Saccharomyces cerevisiae cells have three omega-class glutathione transferases acting as 1-Cys thiol transferases. Biochem J398:187–196
    [Google Scholar]
  14. Garí E., Piedrafita L., Aldea M., Herrero E.. 1997; A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast13:837–848
    [Google Scholar]
  15. Gietz R. D., Sugino A.. 1988; New yeast- Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene74:527–534
    [Google Scholar]
  16. Gomes D. S., Pereira M. D., Panek A. D., Andrade L. R., Eleutherio E. C. A.. 2008; Apoptosis as a mechanism for removal of mutated cells of Saccharomyces cerevisiae: the role of Grx2 under cadmium exposure. Biochim Biophys Acta 1780;160–166
    [Google Scholar]
  17. Hatfield D. L., Berry M. J., Gladyshev V. N.. 2006; Selenium: its Molecular Biology and Role in Human Health, 2nd edn. New York: Springer-Verlag;
    [Google Scholar]
  18. Herrero E., de la Torre-Ruiz M. A.. 2007; Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci64:1518–1530
    [Google Scholar]
  19. Herrero E., Ros J., Bellí G., Cabiscol E.. 2008; Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780;1217–1235
    [Google Scholar]
  20. Izquierdo A., Casas C., Mühlenhoff U., Lillig C. H., Herrero E.. 2008; Yeast Grx6 and Grx7 are monothiol glutaredoxins associated with the early secretory pathway. Eukaryot Cell7:1415–1426
    [Google Scholar]
  21. Khan M. A. S., Chock P. B., Stadtman E. R.. 2005; Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A102:17326–17331
    [Google Scholar]
  22. Letavayová L., Vlckova V., Brozmanová J.. 2006; Selenium: from cancer prevention to DNA damage. Toxicology227:1–14
    [Google Scholar]
  23. Letavayová L., Vlasáková D., Spallholz J. E., Brozmanová J., Chovanec M.. 2008; Toxicity and mutagenicity of selenium compounds in Saccharomyces cerevisiae. Mutat Res638:1–10
    [Google Scholar]
  24. Lewinska A., Bartosz G.. 2008; A role for yeast glutaredoxin genes in selenite-mediated oxidative stress. Fungal Genet Biol45:1182–1187
    [Google Scholar]
  25. Li W., Sun L., Liang Q., Wang J., Mo W., Zhou B.. 2006; Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell17:1802–1811
    [Google Scholar]
  26. Liang Q., Zhou B.. 2007; Copper and manganese induce yeast apoptosis via different pathways. Mol Biol Cell18:4741–4749
    [Google Scholar]
  27. Lillig C. H., Berndt C., Holmgren A.. 2008; Glutaredoxin systems. Biochim Biophys Acta 1780;1304–1317
    [Google Scholar]
  28. Lu J., Holmgren A.. 2009; Selenoproteins. J Biol Chem284:723–727
    [Google Scholar]
  29. Ludovico P., Rodrigues F., Almeida A., Silva M. T., Barrientos A., Corte-Real M.. 2002; Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell13:2598–2606
    [Google Scholar]
  30. Luikenhuis S., Perrone G., Dawes I. W., Grant C. M.. 1998; The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell9:1081–1091
    [Google Scholar]
  31. Madeo F., Fröhlich E., Ligr M., Grey M., Sigrist S. J., Wolf D. H., Fröhlich K. U.. 1999; Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol145:757–767
    [Google Scholar]
  32. Madeo F., Herker E., Maldener C., Wissing S., Lachelt S., Herlan M., Fehr M., Lauber K., Sigrist S. J.. other authors 2002; A caspase-related protease regulates apoptosis in yeast. Mol Cell9:911–917
    [Google Scholar]
  33. Madeo F., Herker E., Wissing S., Jungwirth H., Eisenberg T., Fröhlich K. U.. 2004; Apoptosis in yeast. Curr Opin Microbiol7:655–660
    [Google Scholar]
  34. Mániková D., Vlasáková D., Loduhová J., Letavayová L., Vigasová D., Krascsenitsová E., Vlcková V., Brozmanová J., Chovanec M.. 2010; Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae. Mutagenesis25:155–162
    [Google Scholar]
  35. Marteyn B., Domain F., Legrain P., Chauvat F., Cassier-Chauvat C.. 2009; The thioredoxin reductase-glutaredoxins-ferroredoxin crossroad pathway for selenate tolerance in Synechocystis PCC6803. Mol Microbiol71:520–532
    [Google Scholar]
  36. Mazzoni C., Falcone C.. 2008; Caspase-dependent apoptosis in yeast. Biochim Biophys Acta 1783;1320–1327
    [Google Scholar]
  37. Mesecke N., Mittler S., Eckers E., Herrmann J. M., Deponte M.. 2008a; Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insight into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry47:1452–1463
    [Google Scholar]
  38. Mesecke N., Spang A., Deponte M., Herrmann J. M.. 2008b; A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell19:2673–2680
    [Google Scholar]
  39. Miramar M. D., Costantini P., Ravagnan L., Saraiva L. M., Haouzi D., Brothers G., Penninger J. M., Peleato M. L., Kroemer G., Susin S. A.. 2001; NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem276:16391–16398
    [Google Scholar]
  40. Modjtahedi N., Giordanetto F., Madeo F., Kroemer G.. 2006; Apoptosis-inducing factor: vital and lethal. Trends Cell Biol16:264–272
    [Google Scholar]
  41. Molina M. M., Bellí G., de la Torre M. A., Rodríguez-Manzaneque M. T., Herrero E.. 2004; Nuclear monothiol glutaredoxins of Saccharomyces cerevisiae can function as mitochondrial glutaredoxins. J Biol Chem279:51923–51930
    [Google Scholar]
  42. Morton C. O., Costa dos Santos S., Coote P.. 2007; An amphibian-derived, cationic, α-helical antimicrobial peptide kills yeast by caspase-independent but AIF-dependent programmed cell death. Mol Microbiol65:494–507
    [Google Scholar]
  43. Nargund A. M., Avery S. V., Houghton J. E.. 2008; Cadmium induces a heterogeneous and caspase-dependent response in Saccharomyces cerevisiae. Apoptosis13:811–821
    [Google Scholar]
  44. Pereira C., Silva R. D., Saraiva L., Johansson B., Sousa M. J., Corte-Real M.. 2008; Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta 1783;1286–1302
    [Google Scholar]
  45. Perrone G. G., Tan S. X., Dawes I. W.. 2008; Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783;1354–1368
    [Google Scholar]
  46. Pinson B., Sagot I., Daignan-Fornier B.. 2000; Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol Microbiol36:679–687
    [Google Scholar]
  47. Porras P., Padilla C. A., Krayl M., Voos W., Bárcena J. A.. 2006; One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J Biol Chem281:16551–16562
    [Google Scholar]
  48. Pozniakovsky A. I., Knorre D. A., Markova O. V., Hyman A. A., Skulachev V. P., Severin F. F.. 2005; Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol168:257–269
    [Google Scholar]
  49. Pujol-Carrión N., Bellí G., Herrero E., Nogués A., de la Torre-Ruiz M. A.. 2006; Glutaredoxins Grx3 and Grx4 regulate the nuclear localization of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J Cell Sci119:4554–4564
    [Google Scholar]
  50. Rodríguez-Manzaneque M. T., Ros J., Cabiscol E., Sorribas A., Herrero E.. 1999; Grx5 glutaredoxin plays a central role in protection against protein oxidative damage in Saccharomyces cerevisiae. Mol Cell Biol19:8180–8190
    [Google Scholar]
  51. Rodríguez-Manzaneque M. T., Tamarit J., Bellí G., Ros J., Herrero E.. 2002; Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol Biol Cell13:1109–1121
    [Google Scholar]
  52. Salin H., Fardeau V., Piccini E., Lelandais G., Tanty V., Lemoine S., Jacq C., Devaux F.. 2008; Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics9:333
    [Google Scholar]
  53. Seitomer E., Balar B., He D., Copeland P. R., Kinzy T. G.. 2008; Analysis of Saccharomyces cerevisiae null allele strains identifies a larger role for DNA damage versus oxidative stress pathways in growth inhibition by selenium. Mol Nutr Food Res52:1305–1315
    [Google Scholar]
  54. Sherman F.. 2002; Getting started with yeast. Methods Enzymol350:3–41
    [Google Scholar]
  55. Silva R. D., Sotoca R., Johansson B., Ludovico P., Sansonetty F., Silva M. T., Peinado J. M., Corte-Real M.. 2005; Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol58:824–834
    [Google Scholar]
  56. Spallholz J. E.. 1997; Free radical generation by selenium compounds and their prooxidant toxicity. Biomed Environ Sci10:260–270
    [Google Scholar]
  57. Susin S. A., Lorenzo H. K., Zamzami N., Marzo I., Snow B. E., Brothers G. M., Aebersold R., Siderovski D. P., Penninger J. M., Kroemer G.. 1999; Molecular characterization of mitochondrial apoptosis-inducing factor. Nature397:441–446
    [Google Scholar]
  58. Tarze A., Dauplais M., Grigoras I., Lazard M., Ha-Duong N. T., Barbier F., Blanquet S., Plateau P.. 2007; Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J Biol Chem282:8759–8767
    [Google Scholar]
  59. Vahsen N., Candé C., Brière J. J., Bénit P., Joza N., Larochette N., Mastroberardino P. G., Pequignot M. O., Casares N.. other authors 2004; AIF deficiency compromises oxidative phosphorylation. EMBO J23:4679–4689
    [Google Scholar]
  60. Wach A., Brachat A., Pöhlmann R., Philippsen P.. 1994; New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast10:1793–1808
    [Google Scholar]
  61. Weiner M. P., Costa G. L.. 1995; Rapid PCR site-directed mutagenesis. In PCR Primer: a Laboratory Manual pp613–621 Edited by Dieffenbach C. W., Dveksler G. S.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  62. Wissing S., Ludovico P., Herker E., Büttner S., Engelhardt S. M., Decker T., Link A., Proksch A., Rodrigues F.. other authors 2004; An AIF orthologue regulates apoptosis in yeast. J Cell Biol166:969–974
    [Google Scholar]
  63. Wu M., Xu L. G., Li X., Zhai Z., Shu H. B.. 2002; AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem277:25617–25623
    [Google Scholar]
  64. Zhang N. N., Dudgeon D. D., Paliwal S., Levchenko A., Grote E., Cunningham K. W.. 2006; Multiple signaling pathways regulate yeast cell death during the response to mating pheromones. Mol Biol Cell17:3409–3422
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039719-0
Loading
/content/journal/micro/10.1099/mic.0.039719-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error