1887

Abstract

The (or ) fimbrial operon is ubiquitous and conserved in , but its functions remain poorly described. In routine growth media newborn meningitis isolates of . express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed . common pilus (ECP), at 20 °C, and here we show that the six-gene ()-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The deletion mutant of meningitis . IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient . K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved locus in . genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of . .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039610-0
2010-08-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2408.html?itemId=/content/journal/micro/10.1099/mic.0.039610-0&mimeType=html&fmt=ahah

References

  1. Adlerberth I., Wold A. E. 2009; Establishment of the gut microbiota in western infants. Acta Paediatr 98:229–238
    [Google Scholar]
  2. Beloin C., Roux A., Ghigo J. M. 2008; Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289
    [Google Scholar]
  3. Blackburn D., Husband A., Saldaña Z., Nada R. A., Klena J., Qadri F., Girón J. A. 2009; Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E. coli. J Clin Microbiol 47:1781–1784
    [Google Scholar]
  4. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. & other authors; 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462
    [Google Scholar]
  5. de Ree J. M., Schwillens P., van den Bosch J. F. 1986; Monoclonal antibodies for serotyping the P fimbriae of uropathogenic Escherichia coli. J Clin Microbiol 24:121–125
    [Google Scholar]
  6. Dobrindt U. 2005; (Patho-)genomics of Escherichia coli. Int J Med Microbiol 295:357–371
    [Google Scholar]
  7. Domka J., Lee J., Bansal T., Wood T. K. 2007; Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346
    [Google Scholar]
  8. Donnenberg M. S., Kaper J. B. 1991; Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59:4310–4317
    [Google Scholar]
  9. Ferrières L., Hancock V., Klemm P. 2007; Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains. Microbiology 153:1711–1719
    [Google Scholar]
  10. Genevaux P., Muller S., Bauda P. 1996; A rapid screening procedure to identify mini-Tn 10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142:27–30
    [Google Scholar]
  11. Ghigo J. M. 2001; Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445
    [Google Scholar]
  12. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
    [Google Scholar]
  13. Hammar M., Arnqvist A., Bian Z., Olsén A., Normark S. 1995; Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18:661–670
    [Google Scholar]
  14. Hancock V., Klemm P. 2007; Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75:966–976
    [Google Scholar]
  15. Lasaro M. A., Salinger N., Zhang J., Wang Y., Zhong Z., Goulian M., Zhu J. 2009; F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol 75:246–251
    [Google Scholar]
  16. Lindberg U., Hanson L. A., Jodal U., Lidin-Janson G., Lincoln K., Olling S. 1975; Asymptomatic bacteriuria in schoolgirls. II. differences in Escherichia coli causing asymptomatic bacteriuria. Acta Paediatr Scand 64:432–436
    [Google Scholar]
  17. Macfarlane S., Macfarlane G. T. 2006; Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72:6204–6211
    [Google Scholar]
  18. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583
    [Google Scholar]
  19. Mobley H. L., Jarvis K. G., Elwood J. P., Whittle D. I., Lockatell C. V., Russell R. G., Johnson D. E., Donnenberg M. S., Warren J. W. 1993; Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of αGal(1–4) βGal binding in virulence of a wild-type strain. Mol Microbiol 10:143–155
    [Google Scholar]
  20. Nowrouzian F. L., Wold A. E., Adlerberth I. 2005; Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis 191:1078–1083
    [Google Scholar]
  21. Obata-Yasuoka M., Ba-Thein W., Tsukamoto T., Yoshikawa H., Hayashi H. 2002; Vaginal Escherichia coli share common virulence factor profiles, serotypes and phylogeny with other extraintestinal E. coli. Microbiology 148:2745–2752
    [Google Scholar]
  22. Ochman H., Selander R. K. 1984; Evidence for clonal population structure in Escherichia coli. Proc Natl Acad Sci U S A 81:198–201
    [Google Scholar]
  23. Olsén A., Arnqvist A., Hammar M., Sukupolvi S., Normark S. 1993; The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7:523–536
    [Google Scholar]
  24. O'Toole G. A., Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
    [Google Scholar]
  25. Palestrant D., Holzknecht Z. E., Collins B. H., Parker W., Miller S. E., Bollinger R. R. 2004; Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct Pathol 28:23–27
    [Google Scholar]
  26. Pardee A. B., Jacob F., Monod J. 1959; The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol 1:165–178
    [Google Scholar]
  27. Picard B., Garcia J. S., Gouriou S., Duriez P., Brahimi N., Bingen E., Elion J., Denamur E. 1999; The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67:546–553
    [Google Scholar]
  28. Pouttu R., Puustinen T., Virkola R., Hacker J., Klemm P., Korhonen T. K. 1999; Amino acid residue ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens. Mol Microbiol 31:1747–1757
    [Google Scholar]
  29. Pouttu R., Westerlund-Wikström B., Lång H., Alsti K., Virkola R., Saarela U., Siitonen A., Kalkkinen N., Korhonen T. K. 2001; matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 183:4727–4736
    [Google Scholar]
  30. Pratt L. A., Kolter R. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
    [Google Scholar]
  31. Reisner A., Haagensen J. A., Schembri M. A., Zechner E. L., Molin S. 2003; Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48:933–946
    [Google Scholar]
  32. Rendón M. A., Saldaña Z., Erdem A. L., Monteiro-Neto V., Vázquez A., Kaper J. B., Puente J. L., Girón J. A. 2007; Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104:10637–10642
    [Google Scholar]
  33. Rhen M., Knowles J., Penttilä M. E., Sarvas M., Korhonen T. K. 1983; P fimbriae of Escherichia coli: molecular cloning of DNA fragments containing the structural genes. FEMS Microbiol Lett 19:119–123
    [Google Scholar]
  34. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. 1998; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731
    [Google Scholar]
  35. Rosen D. A., Hooton T. M., Stamm W. E., Humphrey P. A., Hultgren S. J. 2007; Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4:e329
    [Google Scholar]
  36. Russo T. A., Johnson J. R. 2000; Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181:1753–1754
    [Google Scholar]
  37. Saldaña Z., Erdem A. L., Schüller S., Okeke I. N., Lucas M., Sivananthan A., Phillips A. D., Kaper J. B., Puente J. L., Girón J. A. 2009; The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. J Bacteriol 191:3451–3461
    [Google Scholar]
  38. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  39. Sarff L. D., McCracken G. H., Schiffer M. S., Glode M. P., Robbins J. B., Ørskov I., Ørskov F. 1975; Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1:1099–1104
    [Google Scholar]
  40. Savageau M. A. 1983; Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122:732–744
    [Google Scholar]
  41. Schembri M. A., Klemm P. 2001; Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect Immun 69:1322–1328
    [Google Scholar]
  42. Schembri M. A., Kjærgaard K., Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267
    [Google Scholar]
  43. Selander R. K., Korhonen T. K., Väisanen-Rhen V., Williams P. H., Pattison P. E., Caugant D. A. 1986; Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicemia and meningitis. Infect Immun 52:213–222
    [Google Scholar]
  44. Siitonen A. 1992; Escherichia coli in fecal flora of healthy adults: serotypes, P and type 1C fimbriae, non-P mannose-resistant adhesins, and hemolytic activity. J Infect Dis 166:1058–1065
    [Google Scholar]
  45. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  46. Sokurenko E. V., Courtney H. S., Maslow J., Siitonen A., Hasty D. L. 1995; Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177:3680–3686
    [Google Scholar]
  47. Sokurenko E. V., Chesnokova V., Dykhuizen D. E., Ofek I., Wu X. R., Krogfelt K. A., Struve C., Schembri M. A., Hasty D. L. 1998; Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95:8922–8926
    [Google Scholar]
  48. Steyn B., Oosthuizen M. C., MacDonald R., Theron J., Brözel V. S. 2001; The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1:871–879
    [Google Scholar]
  49. Stoodley P., Sauer K., Davies D. G., Costerton J. W. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209
    [Google Scholar]
  50. Swidsinski A., Mendling W., Loening-Baucke V., Ladhoff A., Swidsinski S., Hale L. P., Lochs H. 2005; Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106:1013–1023
    [Google Scholar]
  51. Uhlich G. A., Keen J. E., Elder R. O. 2001; Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157 : H7. Appl Environ Microbiol 67:2367–2370
    [Google Scholar]
  52. Van Houdt R., Michiels C. W. 2005; Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156:626–633
    [Google Scholar]
  53. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P. 1998; Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449
    [Google Scholar]
  54. White-Ziegler C. A., Um S., Pérez N. M., Berns A. L., Malhowski A. J., Young S. 2008; Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166
    [Google Scholar]
  55. Wood T. K., Gonzalez Barrios A. F., Herzberg M., Lee J. 2006; Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72:361–367
    [Google Scholar]
  56. Zdziarski J., Svanborg C., Wullt B., Hacker J., Dobrindt U. 2008; Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation?. Infect Immun 76:695–703
    [Google Scholar]
  57. Zhang L., Foxman B., Marrs C. 2002; Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. J Clin Microbiol 40:3951–3955
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.039610-0
Loading
/content/journal/micro/10.1099/mic.0.039610-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error