1887

Abstract

The (or ) fimbrial operon is ubiquitous and conserved in , but its functions remain poorly described. In routine growth media newborn meningitis isolates of . express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed . common pilus (ECP), at 20 °C, and here we show that the six-gene ()-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The deletion mutant of meningitis . IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient . K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved locus in . genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of . .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039610-0
2010-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2408.html?itemId=/content/journal/micro/10.1099/mic.0.039610-0&mimeType=html&fmt=ahah

References

  1. Adlerberth, I. & Wold, A. E. ( 2009; ). Establishment of the gut microbiota in western infants. Acta Paediatr 98, 229–238.[CrossRef]
    [Google Scholar]
  2. Beloin, C., Roux, A. & Ghigo, J. M. ( 2008; ). Escherichia coli biofilms. Curr Top Microbiol Immunol 322, 249–289.
    [Google Scholar]
  3. Blackburn, D., Husband, A., Saldaña, Z., Nada, R. A., Klena, J., Qadri, F. & Girón, J. A. ( 2009; ). Distribution of the Escherichia coli common pilus among diverse strains of human enterotoxigenic E. coli. J Clin Microbiol 47, 1781–1784.[CrossRef]
    [Google Scholar]
  4. Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  5. de Ree, J. M., Schwillens, P. & van den Bosch, J. F. ( 1986; ). Monoclonal antibodies for serotyping the P fimbriae of uropathogenic Escherichia coli. J Clin Microbiol 24, 121–125.
    [Google Scholar]
  6. Dobrindt, U. ( 2005; ). (Patho-)genomics of Escherichia coli. Int J Med Microbiol 295, 357–371.[CrossRef]
    [Google Scholar]
  7. Domka, J., Lee, J., Bansal, T. & Wood, T. K. ( 2007; ). Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9, 332–346.[CrossRef]
    [Google Scholar]
  8. Donnenberg, M. S. & Kaper, J. B. ( 1991; ). Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59, 4310–4317.
    [Google Scholar]
  9. Ferrières, L., Hancock, V. & Klemm, P. ( 2007; ). Biofilm exclusion of uropathogenic bacteria by selected asymptomatic bacteriuria Escherichia coli strains. Microbiology 153, 1711–1719.[CrossRef]
    [Google Scholar]
  10. Genevaux, P., Muller, S. & Bauda, P. ( 1996; ). A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142, 27–30.[CrossRef]
    [Google Scholar]
  11. Ghigo, J. M. ( 2001; ). Natural conjugative plasmids induce bacterial biofilm development. Nature 412, 442–445.[CrossRef]
    [Google Scholar]
  12. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. ( 2004; ). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108.[CrossRef]
    [Google Scholar]
  13. Hammar, M., Arnqvist, A., Bian, Z., Olsén, A. & Normark, S. ( 1995; ). Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18, 661–670.[CrossRef]
    [Google Scholar]
  14. Hancock, V. & Klemm, P. ( 2007; ). Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75, 966–976.[CrossRef]
    [Google Scholar]
  15. Lasaro, M. A., Salinger, N., Zhang, J., Wang, Y., Zhong, Z., Goulian, M. & Zhu, J. ( 2009; ). F1C fimbriae play an important role in biofilm formation and intestinal colonization by the Escherichia coli commensal strain Nissle 1917. Appl Environ Microbiol 75, 246–251.[CrossRef]
    [Google Scholar]
  16. Lindberg, U., Hanson, L. A., Jodal, U., Lidin-Janson, G., Lincoln, K. & Olling, S. ( 1975; ). Asymptomatic bacteriuria in schoolgirls. II. differences in Escherichia coli causing asymptomatic bacteriuria. Acta Paediatr Scand 64, 432–436.[CrossRef]
    [Google Scholar]
  17. Macfarlane, S. & Macfarlane, G. T. ( 2006; ). Composition and metabolic activities of bacterial biofilms colonizing food residues in the human gut. Appl Environ Microbiol 72, 6204–6211.[CrossRef]
    [Google Scholar]
  18. Miller, V. L. & Mekalanos, J. J. ( 1988; ). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575–2583.
    [Google Scholar]
  19. Mobley, H. L., Jarvis, K. G., Elwood, J. P., Whittle, D. I., Lockatell, C. V., Russell, R. G., Johnson, D. E., Donnenberg, M. S. & Warren, J. W. ( 1993; ). Isogenic P-fimbrial deletion mutants of pyelonephritogenic Escherichia coli: the role of αGal(1–4)βGal binding in virulence of a wild-type strain. Mol Microbiol 10, 143–155.[CrossRef]
    [Google Scholar]
  20. Nowrouzian, F. L., Wold, A. E. & Adlerberth, I. ( 2005; ). Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis 191, 1078–1083.[CrossRef]
    [Google Scholar]
  21. Obata-Yasuoka, M., Ba-Thein, W., Tsukamoto, T., Yoshikawa, H. & Hayashi, H. ( 2002; ). Vaginal Escherichia coli share common virulence factor profiles, serotypes and phylogeny with other extraintestinal E. coli. Microbiology 148, 2745–2752.
    [Google Scholar]
  22. Ochman, H. & Selander, R. K. ( 1984; ). Evidence for clonal population structure in Escherichia coli. Proc Natl Acad Sci U S A 81, 198–201.[CrossRef]
    [Google Scholar]
  23. Olsén, A., Arnqvist, A., Hammar, M., Sukupolvi, S. & Normark, S. ( 1993; ). The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli. Mol Microbiol 7, 523–536.[CrossRef]
    [Google Scholar]
  24. O'Toole, G. A. & Kolter, R. ( 1998; ). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461.[CrossRef]
    [Google Scholar]
  25. Palestrant, D., Holzknecht, Z. E., Collins, B. H., Parker, W., Miller, S. E. & Bollinger, R. R. ( 2004; ). Microbial biofilms in the gut: visualization by electron microscopy and by acridine orange staining. Ultrastruct Pathol 28, 23–27.[CrossRef]
    [Google Scholar]
  26. Pardee, A. B., Jacob, F. & Monod, J. ( 1959; ). The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J Mol Biol 1, 165–178.[CrossRef]
    [Google Scholar]
  27. Picard, B., Garcia, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J. & Denamur, E. ( 1999; ). The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67, 546–553.
    [Google Scholar]
  28. Pouttu, R., Puustinen, T., Virkola, R., Hacker, J., Klemm, P. & Korhonen, T. K. ( 1999; ). Amino acid residue ala-62 in the FimH fimbrial adhesin is critical for the adhesiveness of meningitis-associated Escherichia coli to collagens. Mol Microbiol 31, 1747–1757.[CrossRef]
    [Google Scholar]
  29. Pouttu, R., Westerlund-Wikström, B., Lång, H., Alsti, K., Virkola, R., Saarela, U., Siitonen, A., Kalkkinen, N. & Korhonen, T. K. ( 2001; ). matB, a common fimbrillin gene of Escherichia coli, expressed in a genetically conserved, virulent clonal group. J Bacteriol 183, 4727–4736.[CrossRef]
    [Google Scholar]
  30. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285–293.[CrossRef]
    [Google Scholar]
  31. Reisner, A., Haagensen, J. A., Schembri, M. A., Zechner, E. L. & Molin, S. ( 2003; ). Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48, 933–946.[CrossRef]
    [Google Scholar]
  32. Rendón, M. A., Saldaña, Z., Erdem, A. L., Monteiro-Neto, V., Vázquez, A., Kaper, J. B., Puente, J. L. & Girón, J. A. ( 2007; ). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104, 10637–10642.[CrossRef]
    [Google Scholar]
  33. Rhen, M., Knowles, J., Penttilä, M. E., Sarvas, M. & Korhonen, T. K. ( 1983; ). P fimbriae of Escherichia coli: molecular cloning of DNA fragments containing the structural genes. FEMS Microbiol Lett 19, 119–123.[CrossRef]
    [Google Scholar]
  34. Römling, U., Bian, Z., Hammar, M., Sierralta, W. D. & Normark, S. ( 1998; ). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180, 722–731.
    [Google Scholar]
  35. Rosen, D. A., Hooton, T. M., Stamm, W. E., Humphrey, P. A. & Hultgren, S. J. ( 2007; ). Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med 4, e329 [CrossRef]
    [Google Scholar]
  36. Russo, T. A. & Johnson, J. R. ( 2000; ). Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J Infect Dis 181, 1753–1754.[CrossRef]
    [Google Scholar]
  37. Saldaña, Z., Erdem, A. L., Schüller, S., Okeke, I. N., Lucas, M., Sivananthan, A., Phillips, A. D., Kaper, J. B., Puente, J. L. & Girón, J. A. ( 2009; ). The Escherichia coli common pilus and the bundle-forming pilus act in concert during the formation of localized adherence by enteropathogenic E. coli. J Bacteriol 191, 3451–3461.[CrossRef]
    [Google Scholar]
  38. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Sarff, L. D., McCracken, G. H., Schiffer, M. S., Glode, M. P., Robbins, J. B., Ørskov, I. & Ørskov, F. ( 1975; ). Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet 1, 1099–1104.
    [Google Scholar]
  40. Savageau, M. A. ( 1983; ). Escherichia coli habitats, cell types, and molecular mechanisms of gene control. Am Nat 122, 732–744.[CrossRef]
    [Google Scholar]
  41. Schembri, M. A. & Klemm, P. ( 2001; ). Biofilm formation in a hydrodynamic environment by novel FimH variants and ramifications for virulence. Infect Immun 69, 1322–1328.[CrossRef]
    [Google Scholar]
  42. Schembri, M. A., Kjærgaard, K. & Klemm, P. ( 2003; ). Global gene expression in Escherichia coli biofilms. Mol Microbiol 48, 253–267.[CrossRef]
    [Google Scholar]
  43. Selander, R. K., Korhonen, T. K., Väisanen-Rhen, V., Williams, P. H., Pattison, P. E. & Caugant, D. A. ( 1986; ). Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicemia and meningitis. Infect Immun 52, 213–222.
    [Google Scholar]
  44. Siitonen, A. ( 1992; ). Escherichia coli in fecal flora of healthy adults: serotypes, P and type 1C fimbriae, non-P mannose-resistant adhesins, and hemolytic activity. J Infect Dis 166, 1058–1065.[CrossRef]
    [Google Scholar]
  45. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  46. Sokurenko, E. V., Courtney, H. S., Maslow, J., Siitonen, A. & Hasty, D. L. ( 1995; ). Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes. J Bacteriol 177, 3680–3686.
    [Google Scholar]
  47. Sokurenko, E. V., Chesnokova, V., Dykhuizen, D. E., Ofek, I., Wu, X. R., Krogfelt, K. A., Struve, C., Schembri, M. A. & Hasty, D. L. ( 1998; ). Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95, 8922–8926.[CrossRef]
    [Google Scholar]
  48. Steyn, B., Oosthuizen, M. C., MacDonald, R., Theron, J. & Brözel, V. S. ( 2001; ). The use of glass wool as an attachment surface for studying phenotypic changes in Pseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. Proteomics 1, 871–879.[CrossRef]
    [Google Scholar]
  49. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  50. Swidsinski, A., Mendling, W., Loening-Baucke, V., Ladhoff, A., Swidsinski, S., Hale, L. P. & Lochs, H. ( 2005; ). Adherent biofilms in bacterial vaginosis. Obstet Gynecol 106, 1013–1023.[CrossRef]
    [Google Scholar]
  51. Uhlich, G. A., Keen, J. E. & Elder, R. O. ( 2001; ). Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157 : H7. Appl Environ Microbiol 67, 2367–2370.[CrossRef]
    [Google Scholar]
  52. Van Houdt, R. & Michiels, C. W. ( 2005; ). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156, 626–633.[CrossRef]
    [Google Scholar]
  53. Vidal, O., Longin, R., Prigent-Combaret, C., Dorel, C., Hooreman, M. & Lejeune, P. ( 1998; ). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180, 2442–2449.
    [Google Scholar]
  54. White-Ziegler, C. A., Um, S., Pérez, N. M., Berns, A. L., Malhowski, A. J. & Young, S. ( 2008; ). Low temperature (23 °C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154, 148–166.[CrossRef]
    [Google Scholar]
  55. Wood, T. K., Gonzalez Barrios, A. F., Herzberg, M. & Lee, J. ( 2006; ). Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol 72, 361–367.[CrossRef]
    [Google Scholar]
  56. Zdziarski, J., Svanborg, C., Wullt, B., Hacker, J. & Dobrindt, U. ( 2008; ). Molecular basis of commensalism in the urinary tract: low virulence or virulence attenuation? Infect Immun 76, 695–703.[CrossRef]
    [Google Scholar]
  57. Zhang, L., Foxman, B. & Marrs, C. ( 2002; ). Both urinary and rectal Escherichia coli isolates are dominated by strains of phylogenetic group B2. J Clin Microbiol 40, 3951–3955.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039610-0
Loading
/content/journal/micro/10.1099/mic.0.039610-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error