1887

Abstract

Recent observations have shed light on some of the endogenous iron-acquisition mechanisms of members of the group. In particular, pathogens in the group use siderophores with both unique chemical structures and biological roles. This review will focus on recent discoveries in siderophore biosynthesis and biology in this group, which contains numerous human pathogens, most notably the causative agent of anthrax, .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039404-0
2010-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/1918.html?itemId=/content/journal/micro/10.1099/mic.0.039404-0&mimeType=html&fmt=ahah

References

  1. Abergel R. J., Wilson M. K., Arceneaux J. E., Hoette T. M., Strong R. K., Byers B. R., Raymond K. N. 2006; Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc Natl Acad Sci U S A 103:18499–18503
    [Google Scholar]
  2. Abergel R. J., Zawadzka A. M., Raymond K. N. 2008; Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J Am Chem Soc 130:2124–2125
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodriguez-Quinones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
    [Google Scholar]
  4. Barbeau K., Zhang G., Live D. H., Butler A. 2002; Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124:378–379
    [Google Scholar]
  5. Boukhalfa H., Crumbliss A. L. 2002; Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339
    [Google Scholar]
  6. Bullen J. J., Griffiths E. 1999 Iron and Infection, 2nd edn. New York: Wiley;
  7. Byers B. R., Arceneaux J. E. 1998; Microbial iron transport: iron acquisition by pathogenic microorganisms. Met Ions Biol Syst 35:37–66
    [Google Scholar]
  8. Calugay R. J., Takeyama H., Mukoyama D., Fukuda Y., Suzuki T., Kanoh K., Matsunaga T. 2006; Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101:445–447
    [Google Scholar]
  9. Caparon M. G., Geist R. T., Perez-Casal J., Scott J. R. 1992; Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J Bacteriol 174:5693–5701
    [Google Scholar]
  10. Carlson P. E. Jr, Carr K. A., Janes B. K., Anderson E. C., Hanna P. C. 2009; Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PLoS One 4:e6988
    [Google Scholar]
  11. Carlson P. E. Jr, Dixon S. D., Janes B. K., Carr K. A., Nusca T. D., Anderson E. C., Keene S. E., Sherman D. H., Hanna P. C. 2010; Genetic analysis of petrobactin transport in Bacillus anthracis. Mol Microbiol 75:900–909
    [Google Scholar]
  12. Casadevall A. 2006; Cards of virulence and the global virulome for humans. Microbe 1:359–364
    [Google Scholar]
  13. Cendrowski S., MacArthur W., Hanna P. 2004; Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51:407–417
    [Google Scholar]
  14. Clifton M. C., Corrent C., Strong R. K. 2009; Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 22:557–564
    [Google Scholar]
  15. Dale S. E., Doherty-Kirby A., Lajoie G., Heinrichs D. E. 2004; Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72:29–37
    [Google Scholar]
  16. Dertz E. A., Xu J., Stintzi A., Raymond K. N. 2006; Bacillibactin-mediated iron transport in Bacillus subtilis. J Am Chem Soc 128:22–23
    [Google Scholar]
  17. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E. III 2000; The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257
    [Google Scholar]
  18. Dhungana S., Taboy C. H., Zak O., Larvie M., Crumbliss A. L., Aisen P. 2004; Redox properties of human transferrin bound to its receptor. Biochemistry 43:205–209
    [Google Scholar]
  19. Dhungana S., Anderson D. S., Mietzner T. A., Crumbliss A. L. 2005; Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport. Biochemistry 44:9606–9618
    [Google Scholar]
  20. Drake E. J., Cao J., Qu J., Shah M. B., Straubinger R. M., Gulick A. M. 2007; The 1.8 Å crystal structure of PA2412, an MbtH-like protein from the pyoverdine cluster of Pseudomonas aeruginosa. J Biol Chem 282:20425–20434
    [Google Scholar]
  21. Ferreras J. A., Ryu J. S., Di Lello F., Tan D. S., Quadri L. E. N. 2005; Small molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1:29–32
    [Google Scholar]
  22. Fox D. T., Hotta K., Kim C. Y., Koppisch A. T. 2008; The missing link in petrobactin biosynthesis: asbF encodes a (–)-3-dehydroshikimate dehydratase. Biochemistry 47:12251–12253
    [Google Scholar]
  23. Gardner R. A., Kinkade R., Wang C., Phanstiel O. 4th (2004; Total synthesis of petrobactin and its homologues as potential growth stimuli for Marinobacter hydrocarbonoclasticus, an oil-degrading bacteria. J Org Chem 69:3530–3537
    [Google Scholar]
  24. Garner B. L., Arceneaux J. E., Byers B. R. 2004; Temperature control of a 3,4-dihydroxybenzoate (protocatechuate)-based siderophore in Bacillus anthracis. Curr Microbiol 49:89–94
    [Google Scholar]
  25. Griffiths E. 1999 Iron in Biological Systems, 2nd edn. Chichester, UK: Wiley;
  26. Harris W. R. 2002 Molecular and Cellular Iron Transport New York: Marcel Dekker;
  27. Heinrichs D. E., Rahn A., Dale S. E., Sebulsky M. T. 2004 Iron Transport in Bacteria: Molecular Genetics, Biochemistry, Bacterial Pathogenesis and Ecology Washington, DC: American Society for Microbiology;
  28. Hickford S. J., Kupper F. C., Zhang G., Carrano C. J., Blunt J. W., Butler A. 2004; Petrobactin sulfonate, a new siderophore produced by the marine bacterium Marinobacter hydrocarbonoclasticus. J Nat Prod 67:1897–1899
    [Google Scholar]
  29. Homann V. V., Edwards K. J., Webb E. A., Butler A. 2009; Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Biometals 22:565–571
    [Google Scholar]
  30. Koehler T. M. 2000 Gram-Positive Pathogens Washington, DC: American Society for Microbiology;
  31. Koehler T. M., Dai Z., Kaufman-Yarbray M. 1994; Regulation of the Bacillus anthracis protective antigen gene: CO2 and a trans-acting element activate transcription from one of two promoters. J Bacteriol 176:586–595
    [Google Scholar]
  32. Koppisch A. T., Browder C. C., Moe A. L., Shelley J. T., Kinkel B. A., Hersman L. E., Iyer S., Ruggiero C. E. 2005; Petrobactin is the primary siderophore synthesized by Bacillus anthracis str. Sterne under conditions of iron starvation. Biometals 18:577–585
    [Google Scholar]
  33. Koppisch A. T., Hotta K., Fox D. T., Ruggiero C. E., Kim C. Y., Sanchez T., Iyer S., Browder C. C., Unkefer P. J. other authors 2008a; Biosynthesis of the 3,4-dihydroxybenzoate moieties of petrobactin by Bacillus anthracis. J Org Chem 73:5759–5765
    [Google Scholar]
  34. Koppisch A. T., Dhungana S., Hill K. K., Boukhalfa H., Heine H. S., Colip L. A., Romero R. B., Shou Y., Ticknor L. O. other authors 2008b; Petrobactin is produced by both pathogenic and non-pathogenic isolates of the Bacillus cereus group of bacteria. Biometals 21:581–589
    [Google Scholar]
  35. Lee J. Y., Janes B. K., Passalacqua K. D., Pfleger B. F., Bergman N. H., Liu H., Hakansson K., Somu R. V., Aldrich C. C. other authors 2007; Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J Bacteriol 189:1698–1710
    [Google Scholar]
  36. May J. J., Wendrich T. M., Marahiel M. A. 2001; The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 276:7209–7217
    [Google Scholar]
  37. Miethke M., Marahiel M. A. 2007; Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451
    [Google Scholar]
  38. Miethke M., Klotz O., Linne U., May J. J., Beckering C. L., Marahiel M. A. 2006; Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis. Mol Microbiol 61:1413–1427
    [Google Scholar]
  39. Miethke M., Schmidt S., Marahiel M. A. 2008; The major facilitator superfamily-type transporter YmfE and the multidrug-efflux activator Mta mediate bacillibactin secretion in Bacillus subtilis. J Bacteriol 190:5143–5152
    [Google Scholar]
  40. Neilands J. B. 1974 Microbial Iron Metabolism New York: Academic Press;
  41. Okada N., Geist R. T., Caparon M. G. 1993; Positive transcriptional control of mry regulates virulence in the group A streptococcus. Mol Microbiol 7:893–903
    [Google Scholar]
  42. Ollinger J., Song K. B., Antelmann H., Hecker M., Helmann J. D. 2006; Role of the Fur regulon in iron transport in Bacillus subtilis. J Bacteriol 188:3664–3673
    [Google Scholar]
  43. Oves-Costales D., Kadi N., Fogg M. J., Song L., Wilson K. S., Challis G. L. 2007; Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-dependent condensation of citric acid and spermidine. J Am Chem Soc 129:8416–8417
    [Google Scholar]
  44. Oves-Costales D., Kadi N., Fogg M. J., Song L., Wilson K. S., Challis G. L. 2008; Petrobactin biosynthesis: AsbB catalyzes condensation of spermidine with N8-citryl-spermidine and its N1-(3,4-dihydroxybenzoyl) derivative. Chem Commun (Camb)4034–4036
    [Google Scholar]
  45. Oves-Costales D., Song L., Challis G. L. 2009; Enantioselective desymmetrisation of citric acid catalysed by the substrate-tolerant petrobactin biosynthetic enzyme AsbA. Chem Commun (Camb)1389–1391
    [Google Scholar]
  46. Payne S., Crosa J. 2004 Iron Transport in Bacteria: Molecular Genetics, Biochemistry, Bacterial Pathogenesis and Ecology Washington, DC: American Society for Microbiology;
  47. Pfleger B. F., Lee J. Y., Somu R. V., Aldrich C. C., Hanna P. C., Sherman D. H. 2007; Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 46:4147–4157
    [Google Scholar]
  48. Pfleger B. F., Kim Y., Nusca T. D., Maltseva N., Lee J. Y., Rath C. M., Scaglione J. B., Janes B. K., Anderson E. C. other authors 2008; Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proc Natl Acad Sci U S A 105:17133–17138
    [Google Scholar]
  49. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941
    [Google Scholar]
  50. Raymond K. N., Carrano C. J. 1979; Coordination chemistry and microbial iron transport. Acc Chem Res 12:183–190
    [Google Scholar]
  51. Shimamura T., Watanabe S., Sasaki S. 1985; Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae. Infect Immun 49:455–456
    [Google Scholar]
  52. Siebert M., Severin K., Heide L. 1994; Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology 140:897–904
    [Google Scholar]
  53. Wilson M. K., Abergel R. J., Raymond K. N., Arceneaux J. E., Byers B. R. 2006; Siderophores of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325
    [Google Scholar]
  54. Wilson M. K., Abergel R. J., Arceneaux J. E., Raymond K. N., Byers B. R. 2010; Temporal production of the two Bacillus anthracis siderophores, petrobactin and bacillibactin. Biometals 23:129–134
    [Google Scholar]
  55. Winkelmann G. 2002; Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696
    [Google Scholar]
  56. Zawadzka A. M., Abergel R. J., Nichiporuk R., Andersen U. N., Raymond K. N. 2009a; Siderophore-mediated iron acquisition systems in Bacillus cereus: identification of receptors for anthrax virulence-associated petrobactin. Biochemistry 48:3645–3657
    [Google Scholar]
  57. Zawadzka A. M., Kim Y., Maltseva N., Nichiporuk R., Fan Y., Joachimiak A., Raymond K. N. 2009b; Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci U S A 106:21854–21859
    [Google Scholar]
  58. Zhang G., Amin S. A., Kupper F. C., Holt P. D., Carrano C. J., Butler A. 2009; Ferric stability constants of representative marine siderophores: marinobactins, aquachelins, and petrobactin. Inorg Chem 48:11466–11473
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039404-0
Loading
/content/journal/micro/10.1099/mic.0.039404-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error