1887

Abstract

is a Gram-negative bacterium able to detoxify arsenic-contaminated environments by oxidizing arsenite [As(III)] to arsenate [As(V)] and by scavenging arsenic ions in an extracellular matrix. Its motility and colonization behaviour have been previously suggested to be influenced by arsenite. Using time-course confocal laser scanning microscopy, we investigated its biofilm development in the absence and presence of arsenite. Arsenite was shown to delay biofilm initiation in the wild-type strain; this was partly explained by its toxicity, which caused an increased growth lag time. However, this delayed adhesion step in the presence of arsenite was not observed in either a swimming motility defective mutant or an arsenite oxidase defective mutant; both strains displayed the wild-type surface properties and growth capacities. We propose that during the biofilm formation process arsenite acts on swimming motility as a result of the arsenite oxidase activity, preventing the switch between planktonic and sessile lifestyles. Our study therefore highlights the existence, under arsenite exposure, of a competition between swimming motility, resulting from arsenite oxidation, and biofilm initiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039313-0
2010-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2336.html?itemId=/content/journal/micro/10.1099/mic.0.039313-0&mimeType=html&fmt=ahah

References

  1. Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., Goyer, R., Menzer, R., Rossman, T. & other authors ( 1999; ). Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107, 593–597.[CrossRef]
    [Google Scholar]
  2. Barraud, N., Schleheck, D., Klebensberger, J., Webb, J. S., Hassett, D. J., Rice, S. A. & Kjelleberg, S. ( 2009; ). Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191, 7333–7342.[CrossRef]
    [Google Scholar]
  3. Bellon-Fontaine, M.-N., Rault, J. & van Oss, C. J. ( 1996; ). Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid-base properties of microbial cells. Colloids Surf B Biointerfaces 7, 47–53.[CrossRef]
    [Google Scholar]
  4. Carapito, C., Muller, D., Turlin, E., Koechler, S., Danchin, A., Van Dorsselaer, A., Leize-Wagner, E., Bertin, P. N. & Lett, M. C. ( 2006; ). Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenibacter arsenoxydans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88, 595–606.[CrossRef]
    [Google Scholar]
  5. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  6. de Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. ( 1990; ). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172, 6568–6572.
    [Google Scholar]
  7. Eberl, L., Molin, S. & Givskov, M. ( 1999; ). Surface motility of Serratia liquefaciens MG1. J Bacteriol 181, 1703–1712.
    [Google Scholar]
  8. Flemming, H. C. & Wingender, J. ( 2001; ). Relevance of microbial extracellular polymeric substances (EPSs). Part I: structural and ecological aspects. Water Sci Technol 43, 1–8.
    [Google Scholar]
  9. Harrison, J. J., Ceri, H. & Turner, R. J. ( 2007; ). Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5, 928–938.[CrossRef]
    [Google Scholar]
  10. Harshey, R. M. ( 2003; ). Bacterial motility on a surface: many ways to a common goal. Annu Rev Microbiol 57, 249–273.[CrossRef]
    [Google Scholar]
  11. Hengge, R. ( 2009; ). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263–273.[CrossRef]
    [Google Scholar]
  12. Jonas, K., Edwards, A. N., Ahmad, I., Romeo, T., Römling, U. & Melefors, Ö. ( 2010; ). Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium. Environ Microbiol 12, 524–540.[CrossRef]
    [Google Scholar]
  13. Kirov, S. M., Castrisios, M. & Shaw, J. G. ( 2004; ). Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72, 1939–1945.[CrossRef]
    [Google Scholar]
  14. Klausen, M., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003a; ). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50, 61–68.[CrossRef]
    [Google Scholar]
  15. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003b; ). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511–1524.[CrossRef]
    [Google Scholar]
  16. Koechler, S., Cleiss-Arnold, J., Proux, C., Sismeiro, O., Dillies, M. A., Goulhen-Chollet, F., Hommais, F., Lièvremont, D., Arsène-Ploetze, F. & other authors ( 2010; ). Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol 10, 53 [CrossRef]
    [Google Scholar]
  17. Kolter, R. & Greenberg, E. P. ( 2006; ). Microbial sciences: the superficial life of microbes. Nature 441, 300–302.[CrossRef]
    [Google Scholar]
  18. Lièvremont, D., Bertin, P. N. & Lett, M. C. ( 2009; ). Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91, 1229–1237.[CrossRef]
    [Google Scholar]
  19. Macnab, R. M. ( 2004; ). Type III flagellar protein export and flagellar assembly. Biochim Biophys Acta 1694, 207–217.[CrossRef]
    [Google Scholar]
  20. Muller, D., Lievremont, D., Simeonova, D. D., Hubert, J. C. & Lett, M. C. ( 2003; ). Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185, 135–141.[CrossRef]
    [Google Scholar]
  21. Muller, D., Simeonova, D. D., Riegel, P., Mangenot, S., Koechler, S., Lièvremont, D., Bertin, P. N. & Lett, M. C. ( 2006; ). Herminiimonas arsenicoxydans sp. nov., a metalloresistant bacterium. Int J Syst Evol Microbiol 56, 1765–1769.[CrossRef]
    [Google Scholar]
  22. Muller, D., Medigue, C., Koechler, S., Barbe, V., Barakat, M., Talla, E., Bonnefoy, V., Krin, E., Arsène-Ploetze, F. & other authors ( 2007; ). A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3, e53 [CrossRef]
    [Google Scholar]
  23. Nejidat, A., Saadi, I. & Ronen, Z. ( 2008; ). Effect of flagella expression on adhesion of Achromobacter piechaudii to chalk surfaces. J Appl Microbiol 105, 2009–2014.[CrossRef]
    [Google Scholar]
  24. Oremland, R. S. & Stolz, J. F. ( 2003; ). The ecology of arsenic. Science 300, 939–944.[CrossRef]
    [Google Scholar]
  25. O'Toole, G., Kaplan, H. B. & Kolter, R. ( 2000; ). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  26. Pratt, L. A. & Kolter, R. ( 1998; ). Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30, 285–293.[CrossRef]
    [Google Scholar]
  27. Pratt, J. T., Tamayo, R., Tischler, A. D. & Camilli, A. ( 2007; ). PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282, 12860–12870.[CrossRef]
    [Google Scholar]
  28. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. ( 2002; ). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184, 1140–1154.[CrossRef]
    [Google Scholar]
  29. Todhanakasem, T. & Young, G. M. ( 2008; ). Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J Bacteriol 190, 6030–6034.[CrossRef]
    [Google Scholar]
  30. Tolker-Nielsen, T., Brinch, U. C., Ragas, P. C., Andersen, J. B., Jacobsen, C. S. & Molin, S. ( 2000; ). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182, 6482–6489.[CrossRef]
    [Google Scholar]
  31. Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J. & Michiels, J. ( 2008; ). Living on a surface: swarming and biofilm formation. Trends Microbiol 16, 496–506.[CrossRef]
    [Google Scholar]
  32. Weeger, W., Lièvremont, D., Perret, M., Lagarde, F., Hubert, J. C., Leroy, M. & Lett, M. C. ( 1999; ). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. Biometals 12, 141–149.[CrossRef]
    [Google Scholar]
  33. Weiss, S., Carapito, C., Cleiss, J., Koechler, S., Turlin, E., Coppee, J. Y., Heymann, M., Kugler, V., Stauffert, M. & other authors ( 2009; ). Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 91, 192–203.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039313-0
Loading
/content/journal/micro/10.1099/mic.0.039313-0
Loading

Data & Media loading...

( PDF, 74 kb): Surface adhesion of the wild-type strain and Δ and Δ mutants as a function of time in the absence and in the presence of arsenic Adhesion to either chloroform or hexadecane of the wild-type strain and the Δ and Δ mutants cultivated in the presence or not of 0.67 mM arsenite TEM micrographs of wild-type strain and Δ mutant [ PDF] (336 kb) Two-dimensional view of the biofilm surface coverage after 24 h of culture in the presence of 0.67 mM As(III) of the wild-type strain, the Δ mutant and the Δ mutant [ PDF] (418 kb)

PDF

( PDF, 74 kb): Surface adhesion of the wild-type strain and Δ and Δ mutants as a function of time in the absence and in the presence of arsenic Adhesion to either chloroform or hexadecane of the wild-type strain and the Δ and Δ mutants cultivated in the presence or not of 0.67 mM arsenite TEM micrographs of wild-type strain and Δ mutant [ PDF] (336 kb) Two-dimensional view of the biofilm surface coverage after 24 h of culture in the presence of 0.67 mM As(III) of the wild-type strain, the Δ mutant and the Δ mutant [ PDF] (418 kb)

PDF

( PDF, 74 kb): Surface adhesion of the wild-type strain and Δ and Δ mutants as a function of time in the absence and in the presence of arsenic Adhesion to either chloroform or hexadecane of the wild-type strain and the Δ and Δ mutants cultivated in the presence or not of 0.67 mM arsenite TEM micrographs of wild-type strain and Δ mutant [ PDF] (336 kb) Two-dimensional view of the biofilm surface coverage after 24 h of culture in the presence of 0.67 mM As(III) of the wild-type strain, the Δ mutant and the Δ mutant [ PDF] (418 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error