1887

Abstract

produces a large amount of the toxic metabolite hydrogen sulfide in the oral cavity. Here, we report the molecular basis of HS production, which is associated with two different enzymes: the previously reported Cdl (Fn1220) and the newly identified Lcd (Fn0625). SDS-PAGE analysis with activity staining revealed that crude enzyme extracts from ATCC 25586 contained three major HS-producing proteins. Two of the proteins with low molecular masses migrated similarly to purified Fn0625 and Fn1220. Their kinetic values suggested that Fn0625 had a lower enzymic capacity to produce HS from -cysteine (∼30 %) than Fn1220. The Fn0625 protein degraded a variety of substrates containing C–S linkages to produce ammonia, pyruvate and sulfur-containing products. Unlike Fn0625, Fn1220 produced neither pyruvate nor ammonia from -cysteine. Reversed-phase HPLC separation and mass spectrometry showed that incubation of -cysteine with Fn1220 produced HS and an uncommon amino acid, lanthionine, which is a natural constituent of the peptidoglycans of ATCC 25586. In contrast, most of the sulfur-containing substrates tested, except -cysteine, were not used by Fn1220. Real-time PCR analysis demonstrated that the gene showed several-fold higher expression than and housekeeping genes in exponential-phase cultures of . Thus, we conclude that Fn0625 and Fn1220 produce HS in distinct manners: Fn0625 carries out -elimination of -cysteine to produce HS, pyruvate and ammonia, whereas Fn1220 catalyses the -replacement of -cysteine to produce HS and lanthionine, the latter of which may be used for peptidoglycan formation in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039180-0
2010-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2260.html?itemId=/content/journal/micro/10.1099/mic.0.039180-0&mimeType=html&fmt=ahah

References

  1. Alting, A. C., Engels, W. J. M., van Schalkwijk, S. & Exterkate, F. A. ( 1995; ). Purification and characterizaiton of cystathionine β-lyase from Lactococcus lactis subsp. cremoris B78 and its possible role in favor development in cheese. Appl Environ Microbiol 61, 4037–4042.
    [Google Scholar]
  2. Awano, N., Wada, M., Mori, H., Nakamori, S. & Takagi, H. ( 2005; ). Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71, 4149–4152.[CrossRef]
    [Google Scholar]
  3. Becker, M. A., Kredich, N. M. & Tomkins, G. M. ( 1969; ). The purification and characterization of O-acetylserine sulfhydrylase-A from Salmonella typhimurium. J Biol Chem 244, 2418–2427.
    [Google Scholar]
  4. Boronat, A., Britton, P., Jones-Mortimer, M. C., Kornberg, H. L., Lee, L. G., Murfitt, D. & Parra, F. ( 1984; ). Location on the Escherichia coli genome of a gene specifying O-acetylserine (thiol)-lyase. J Gen Microbiol 130, 673–685.
    [Google Scholar]
  5. Chen, X., Jhee, K. H. & Kruger, W. D. ( 2004; ). Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279, 52082–52086.[CrossRef]
    [Google Scholar]
  6. Chiku, T., Padovani, D., Zhu, W., Singh, S., Vitvitsky, V. & Banerjee, R. ( 2009; ). H2S biogenesis by human cystathionine γ-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284, 11601–11612.[CrossRef]
    [Google Scholar]
  7. Chu, L., Burgum, A., Kolodrubetz, D. & Holt, S. C. ( 1995; ). The 46-kilodalton-hemolysin gene from Treponema denticola encodes a novel hemolysin homologous to aminotransferases. Infect Immun 63, 4448–4455.
    [Google Scholar]
  8. Chu, L., Ebersole, J. L., Kurzban, G. P. & Holt, S. C. ( 1997; ). Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities. Infect Immun 65, 3231–3238.
    [Google Scholar]
  9. Claesson, R., Edlund, M. B., Persson, S. & Carlsson, J. ( 1990; ). Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiol Immunol 5, 137–142.[CrossRef]
    [Google Scholar]
  10. Fukamachi, H., Nakano, Y., Yoshimura, M. & Koga, T. ( 2002; ). Cloning and characterization of the l-cysteine desulfhydrase gene of Fusobacterium nucleatum. FEMS Microbiol Lett 215, 75–80.
    [Google Scholar]
  11. Ito, S., Nagamune, H., Tamura, H. & Yoshida, Y. ( 2008; ). Identification and molecular analysis of βC–S lyase producing hydrogen sulfide in Streptococcus intermedius. J Med Microbiol 57, 1411–1419.[CrossRef]
    [Google Scholar]
  12. Kapatral, V., Anderson, I., Ivanova, N., Reznik, G., Los, T., Lykidis, A., Bhattacharyya, A., Bartman, A., Gardner, W. & other authors ( 2002; ). Genome sequence and analysis of the oral bacterium Fusobacterium nucleatum strain ATCC 25586. J Bacteriol 184, 2005–2018.[CrossRef]
    [Google Scholar]
  13. Kato, K., Umemoto, T., Sagawa, H. & Kotani, S. ( 1979; ). Lanthionine as an essential constituent of cell wall peptidoglycan of Fusobacterium nucleatum. Curr Microbiol 3, 147–151.[CrossRef]
    [Google Scholar]
  14. Kolenbrander, P. E., Andersen, R. N., Blehert, D. S., Egland, P. G., Foster, J. S. & Palmer, R. J., Jr ( 2002; ). Communication among oral bacteria. Microbiol Mol Biol Rev 66, 486–505.[CrossRef]
    [Google Scholar]
  15. Kredich, N. M. & Tomkins, G. M. ( 1966; ). The enzymic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241, 4955–4965.
    [Google Scholar]
  16. Kurzban, G. P., Chu, L., Ebersole, J. L. & Holt, S. C. ( 1999; ). Sulfhemoglobin formation in human erythrocytes by cystalysin, an l-cysteine desulfhydrase from Treponema denticola. Oral Microbiol Immunol 14, 153–164.[CrossRef]
    [Google Scholar]
  17. Li, L., Bhatia, M., Zhu, Y. Z., Zhu, Y. C., Ramnath, R. D., Wang, Z. J., Anuar, F. B., Whiteman, M., Salto-Tellez, M. & Moore, P. K. ( 2005; ). Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19, 1196–1198.
    [Google Scholar]
  18. Martinez-Cuesta, M. C., Pelaez, C., Eagles, J., Gasson, M. J., Requena, T. & Hanniffy, S. B. ( 2006; ). YtjE from Lactococcus lactis IL1403 Is a C–S lyase with α,γ-elimination activity toward methionine. Appl Environ Microbiol 72, 4878–4884.[CrossRef]
    [Google Scholar]
  19. Moore, W. E. & Moore, L. V. ( 1994; ). The bacteria of periodontal diseases. Periodontol 2000 5, 66–77.[CrossRef]
    [Google Scholar]
  20. Morhart, R. E., Mata, L. J., Sinskey, A. J. & Harris, R. S. ( 1970; ). A microbiological and biochemical study of gingival crevice debris obtained from Guatemalan Mayan Indians. J Periodontol 41, 644–649.[CrossRef]
    [Google Scholar]
  21. Ng, W. & Tonzetich, J. ( 1984; ). Effect of hydrogen sulfide and methyl mercaptan on the permeability of oral mucosa. J Dent Res 63, 994–997.[CrossRef]
    [Google Scholar]
  22. Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. ( 1995; ). How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4, 2411–2423.[CrossRef]
    [Google Scholar]
  23. Persson, S. ( 1992; ). Hydrogen sulfide and methyl mercaptan in periodontal pockets. Oral Microbiol Immunol 7, 378–379.[CrossRef]
    [Google Scholar]
  24. Persson, S., Edlund, M. B., Claesson, R. & Carlsson, J. ( 1990; ). The formation of hydrogen sulfide and methyl mercaptan by oral bacteria. Oral Microbiol Immunol 5, 195–201.[CrossRef]
    [Google Scholar]
  25. Pianotti, R., Lachette, S. & Dills, S. ( 1986; ). Desulfuration of cysteine and methionine by Fusobacterium nucleatum. J Dent Res 65, 913–917.[CrossRef]
    [Google Scholar]
  26. Qi, M., Nelson, K. E., Daugherty, S. C., Nelson, W. C., Hance, I. R., Morrison, M. & Forsberg, C. W. ( 2005; ). Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. J Bacteriol 187, 3739–3751.[CrossRef]
    [Google Scholar]
  27. Ratcliff, P. A. & Johnson, P. W. ( 1999; ). The relationship between oral malodor, gingivitis, and periodontitis. A review. J Periodontol 70, 485–489.[CrossRef]
    [Google Scholar]
  28. Schmidt, A. ( 1987; ). d-Cysteine desulfhydrase from spinach. Methods Enzymol 143, 449–451.
    [Google Scholar]
  29. Singh, S., Padovani, D., Leslie, R. A., Chiku, T. & Banerjee, R. ( 2009; ). Relative contributions of cystathionine β-synthase and γ-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284, 22457–22466.[CrossRef]
    [Google Scholar]
  30. Soda, K. ( 1968; ). Microdetermination of d-amino acids and d-amino acid oxidase activity with 3-methyl-2-benzothiazolone hydrazone hydrochloride. Anal Biochem 25, 228–235.[CrossRef]
    [Google Scholar]
  31. Sperandio, B., Polard, P., Ehrlich, D. S., Renault, P. & Guedon, E. ( 2005; ). Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187, 3762–3778.[CrossRef]
    [Google Scholar]
  32. Tapuhi, Y., Schmidt, D. E., Lindner, W. & Karger, B. L. ( 1981; ). Dansylation of amino acids for high-performance liquid chromatography analysis. Anal Biochem 115, 123–129.[CrossRef]
    [Google Scholar]
  33. Tonzetich, J. ( 1971; ). Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch Oral Biol 16, 587–597.[CrossRef]
    [Google Scholar]
  34. Vasstrand, E. N., Jensen, H. B., Miron, T. & Hofstad, T. ( 1982; ). Composition of peptidoglycans in Bacteroidaceae: determination and distribution of lanthionine. Infect Immun 36, 114–122.
    [Google Scholar]
  35. Washio, J., Sato, T., Koseki, T. & Takahashi, N. ( 2005; ). Hydrogens sulfide-producing bacteria in tongue biofilm and their relationship with oral malodour. J Med Microbiol 54, 889–895.[CrossRef]
    [Google Scholar]
  36. Yaegaki, K., Qian, W., Murata, T., Imai, T., Sato, T., Tanaka, T. & Kamoda, T. ( 2008; ). Oral malodorous compound causes apoptosis and genomic DNA damage in human gingival fibroblasts. J Periodontal Res 43, 391–399.[CrossRef]
    [Google Scholar]
  37. Yang, G., Sun, X. & Wang, R. ( 2004; ). Hydrogen sulfide-induced apoptosis of human aorta smooth muscle cells via the activation of mitogen-activated protein kinases and caspase-3. FASEB J 18, 1782–1784.
    [Google Scholar]
  38. Yoshida, Y., Nakano, Y., Amano, A., Yoshimura, M., Fukamachi, H., Oho, T. & Koga, T. ( 2002; ). lcd from Streptoccus anginosus encodes a C–S lyase with α,β-elimination activity that degarades L-cysteine. Microbiology 148, 3961–3970.
    [Google Scholar]
  39. Yoshida, Y., Negishi, M., Amano, A., Oho, T. & Nakano, Y. ( 2003; ). Differences in the βC–S lyase activities of viridans group streptococci. Biochem Biophys Res Commun 300, 55–60.[CrossRef]
    [Google Scholar]
  40. Yoshida, Y., Ito, S., Sasaki, T., Kishi, M., Kurota, M., Suwabe, A., Kunimatsu, K. & Kato, H. ( 2008; ). Molecular and enzymatic characterization of βC–S lyase in Streptococcus constellatus. Oral Microbiol Immunol 23, 245–253.[CrossRef]
    [Google Scholar]
  41. Yoshida, Y., Ito, S., Tamura, H. & Kunimatsu, K. ( 2010; ). Use of a novel assay to evaluate enzymes that produce hydrogen sulfide in Fusobacterium nucleatum. J Microbiol Methods 80, 313–315.[CrossRef]
    [Google Scholar]
  42. Yoshimura, M., Nakano, Y., Yamashita, Y., Oho, T., Saito, T. & Koga, T. ( 2000; ). Formation of methyl mercaptan from l-methionine by Porphyromonas gingivalis. Infect Immun 68, 6912–6916.[CrossRef]
    [Google Scholar]
  43. Zdych, E., Peist, R., Reidl, J. & Boos, W. ( 1995; ). MalY of Escherichia coli is an enzyme with the activity of a βC–S lyase (cystathionase). J Bacteriol 177, 5035–5039.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039180-0
Loading
/content/journal/micro/10.1099/mic.0.039180-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error