1887

Abstract

Ribosome-inactivating proteins (RIPs) are cytotoxic -glycosidases identified in numerous plants, but also constitute a subunit of the bacterial Shiga toxin. Classification of plant RIPs is based on the absence (type I) or presence (type II) of an additional lectin module. In Shiga toxin, sugar binding is mediated by a distinct RIP-associated homopentamer. In the genome of two actinomycetes, we identified RIP-like proteins that resemble plant type I RIPs rather than the RIP subunit (StxA) of Shiga toxin. Some representatives of - and -proteobacteria also contain genes encoding RIP-like proteins, but these are homologous to StxA. Here, we describe the isolation and initial characterization of the RIP-like gene product SCO7092 (RIPsc) from the Gram-positive soil bacterium . The gene was expressed in as a recombinant protein of about 30 kDa, and displayed the characteristic -glycosidase activity causing specific rRNA depurination. In and , RIPsc overproduction resulted in a dramatic decrease in the growth rate. In addition, intracellular production was deleterious for . However, when applied externally to microbial cells, purified RIPsc did not display antibacterial or antifungal activity, suggesting that it cannot enter these cells. In a cell-free system, however, purified RIPsc protein displayed strong inhibitory activity towards protein translation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039073-0
2010-10-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3021.html?itemId=/content/journal/micro/10.1099/mic.0.039073-0&mimeType=html&fmt=ahah

References

  1. Anné J., Van Mellaert L., Eyssen H.. 1990; Optimum conditions for efficient transformation of Streptomyces venezuelae protoplasts. Appl Microbiol Biotechnol32:431–435
    [Google Scholar]
  2. Antolín P., Girotti A., Arias F. J., Barriuso B., Jiménez P., Rojo M. A., Girbés T.. 2004; Bacterial expression of biologically active recombinant musarmin 1 from bulbs of Muscari armeniacum L. and Miller. J Biotechnol112:313–322
    [Google Scholar]
  3. Barbieri L., Battelli M. G., Stirpe F.. 1993; Ribosome-inactivating proteins from plants. Biochim Biophys Acta1154:237–282
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2. Nature417:141–147
    [Google Scholar]
  5. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D.. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14:115–132
    [Google Scholar]
  6. Chi P. V., Truong H. Q., Ha N. T., Chung W. I., Binh L. T.. 2001; Characterisation of trichobakin, a type I ribosome-inactivating protein from Trichosanthes sp. Bac Kan 8-98. Biotechnol Appl Biochem34:85–92
    [Google Scholar]
  7. Cho H. J., Lee S. J., Kim S., Kim B. D.. 2000; Isolation and characterisation of cDNAs encoding ribosome-inactivating protein from Dianthus sinensis L. Mol Cells10:135–141
    [Google Scholar]
  8. Endo Y., Gluck A., Wool I. G.. 1991; Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. J Mol Biol221:193–207
    [Google Scholar]
  9. Geukens N., Lammertyn E., Van Mellaert L., Schacht S., Schaerlaekens K., Parro V., Bron S., Engelborghs Y., Mellado R. P., Anné J.. 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol183:4752–4760
    [Google Scholar]
  10. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A.. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast11:355–360
    [Google Scholar]
  11. Girbés T., Ferreras J. M., Arias F. J., Stirpe F.. 2004; Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev Med Chem4:461–476
    [Google Scholar]
  12. Hosted T. J., Wang T. X., Alexander D. C., Horan A. C.. 2001; Characterization of the biosynthetic gene cluster for the oligosaccharide antibiotic, Evernimicin, in Micromonospora carbonacea var. africana ATCC 39149. J Ind Microbiol Biotechnol27:386–392
    [Google Scholar]
  13. Iglesias R., Pérez Y., de Torre C., Ferreras J. M., Antolín P., Jiménez P., Rojo M. A., Méndez E., Girbés T.. 2005; Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet ( Beta vulgaris) leaves. J Exp Bot56:1675–1684
    [Google Scholar]
  14. Johannes L., Römer W.. 2010; Shiga toxins – from cell biology to biomedical applications. Nat Rev Microbiol8:105–116
    [Google Scholar]
  15. Kataoka J., Habuka N., Miyano M., Takanami Y., Koiwa A.. 1991; DNA sequence of Mirabilis antiviral protein (MAP), a ribosome-inactivating protein with antiviral property, from Mirabilis jalapa L. and its expression in E. coli. J Biol Chem266:8426–8430
    [Google Scholar]
  16. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  17. Korn F., Weingärtner B., Kutzner H. J.. 1978; A study of twenty actinophages: morphology, serological relationship and host range. In Genetics of the Actinomycetales pp251–270 Edited by Freechsen E., Tarnak I., Thumin J. H.. Stuttgart: G. Fischer Verlag;
    [Google Scholar]
  18. Kwon S. Y., An C. S., Liu J. R., Kwak S.-S., Lee H. S., Lim J. K., Paek K. H.. 2000; Molecular cloning of a cDNA encoding ribosome-inactivating protein from Amaranthus viridis and its expression in E. coli. Mol Cells10:8–12
    [Google Scholar]
  19. Lammertyn E.. 2000; Isolation and characterisation of a novel subtilisin inhibitor gene from Streptomyces venezuelae and evaluation of its regulatory sequences for heterologous protein secretion by Streptomyces lividans. PhD thesis Katholieke Universiteit Leuven; Leuven, Belgium:
  20. Leclerque A.. 2008; Whole genome-based assessment of the taxonomic position of the arthropod pathogenic bacterium Rickettsiella grylli. FEMS Microbiol Lett283:117–127
    [Google Scholar]
  21. Lerat S., Simao-Beaunoir A. M., Beaulieu C.. 2009; Genetic and physiological determinants of Streptomyces scabies pathogenicity. Mol Plant Pathol10:579–585
    [Google Scholar]
  22. Lord J. M., Roberts L. M., Robertus J. D.. 1994; Ricin: structure, mode of action, and some current applications. FASEB J8:201–208
    [Google Scholar]
  23. Melchior W. B. Jr, Tolleson W. H.. 2010; A functional quantitative polymerase chain reaction assay for ricin, Shiga toxin, and related ribosome-inactivating proteins. Anal Biochem396:204–211
    [Google Scholar]
  24. Ng T. B., Wong J. H., Wang H.. 2010; Recent progress in research on ribosome inactivating proteins. Curr Protein Pept Sci11:37–53
    [Google Scholar]
  25. Park S. W., Stevens N. M., Vivanco J. M.. 2002a; Enzymatic specificity of three ribosome-inactivating proteins against fungal ribosomes, and correlation with antifungal activity. Planta216:227–234
    [Google Scholar]
  26. Park S. W., Lawrence C. B., Linden J. C., Vivanco J. M.. 2002b; Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol130:164–178
    [Google Scholar]
  27. Park S. W., Prithiviraj B., Vepachedu R., Vivanco J. M.. 2006; Isolation and purification of ribosome-inactivating proteins. Methods Mol Biol318:335–347
    [Google Scholar]
  28. Rajamohan F., Engstrom C. R., Denton T. J., Engen L. A., Kourinov I., Uckun F. M.. 1999; High-level expression and purification of biologically active recombinant pokeweed antiviral protein. Protein Expr Purif16:359–368
    [Google Scholar]
  29. Roberts W. K., Selitrennikoff C. P.. 1986; Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta880:161–170
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sandvig K.. 2001; Shiga toxins. Toxicon39:1629–1635
    [Google Scholar]
  32. Sandvig K.. 2006; The Shiga toxins: properties and actions on cells. In The Comprehensive Sourcebook of Bacterial Toxins, 3rd edn. pp310–322 Edited by Alouf J. E., Popoff M. R.. San Diego, CA: Academic Press;
    [Google Scholar]
  33. Schlumbaum A., Mauch F., Vogeli U., Boller T.. 1986; Plant chitinases are potent inhibitors of fungal growth. Nature324:365–367
    [Google Scholar]
  34. Sharma N., Park S. W., Vepachedu R., Barbieri L., Ciani M., Stirpe F., Savary B. J., Vivanco J. M.. 2004; Isolation and characterisation of a RIP-like protein from tobacco with dual enzymatic activity. Plant Physiol134:171–181
    [Google Scholar]
  35. Sianidis G., Pozidis C., Becker F., Vrancken K., Sjoeholm C., Karamanou S., Takano-Wik M., Van Mellaert L., Schaeffer Th.. other authors 2006; Functional large-scale production of a novel Jonesia sp. xyloglucanase by heterologous secretion from Streptomyces lividans. J Biotechnol121:498–507
    [Google Scholar]
  36. Stirpe F.. 2004; Ribosome-inactivating proteins. Toxicon44:371–383
    [Google Scholar]
  37. Stirpe F., Battelli M. G.. 2006; Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci63:1850–1866
    [Google Scholar]
  38. Stirpe F., Barbieri L., Batelli M. G., Soria M., Lappi D. A.. 1992; Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y)10:405–412
    [Google Scholar]
  39. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  40. Suh J. K., Hovde C. J., Robertus J. D.. 1998; Shiga toxin attacks bacterial ribosomes as effectively as eukaryotic ribosomes. Biochemistry37:9394–9398
    [Google Scholar]
  41. Thomas B. J., Rothstein R.. 1989; Elevated recombination rates in transcriptionally active DNA. Cell56:619–630
    [Google Scholar]
  42. Van Mellaert L., Anné J.. 2001; Gram-positive bacteria for the heterologous production of biopharmaceutical compounds. In Focus on Biotechnologyvol I pp277–300 Novel Frontiers in the Production of Compounds for Biomedical Use. Edited by Van Broekhoven A., Shapiro F., Anné J.. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  43. Van Mellaert L., Dillen C., Proost P., Sablon E., Deleys R., Van Broekhoven A., Heremans H., Van Damme J., Eyssen H., Anné J.. 1994; Efficient secretion of biologically active mouse tumor necrosis factor α by Streptomyces lividans. Gene150:153–158
    [Google Scholar]
  44. Vivanco J. M., Savary B. J., Flores H. E.. 1999; Characterization of two novel type I ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol119:1447–1456
    [Google Scholar]
  45. Ward J. M., Janssen G. R., Kieser T., Bibb M. J., Buttner M. J., Hopwood D. A.. 1986; Construction and characterisation of a series of multi-copy promoter-probe plasmid vectors for Streptomyces using aminoglycoside phosphotransferase gene from Tn 5 as indicator. Mol Gen Genet203:468–478
    [Google Scholar]
  46. Wu T. H., Chow L. P., Lin J. Y.. 1998; Sechiumin, a ribosome-inactivating protein from the edible gourd, characterisation, molecular cloning and expression. Eur J Biochem255:400–408
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039073-0
Loading
/content/journal/micro/10.1099/mic.0.039073-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error