1887

Abstract

Autotransporter (AT) proteins are found in all pathotypes and are often associated with virulence. In this study we took advantage of the large number of available genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.039024-0
2010-08-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2459.html?itemId=/content/journal/micro/10.1099/mic.0.039024-0&mimeType=html&fmt=ahah

References

  1. Allsopp L. P., Totsika M., Tree J. J., Ulett G. C., Mabbett A. N., Wells T. J., Kobe B., Beatson S. B., Schembri M. A.. 2010; UpaH is a newly identified autotransporter protein that contributes to biofilm formation and bladder colonization by uropathogenic Escherichia coli CFT073. Infect Immun78:1659–1669
    [Google Scholar]
  2. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  3. Benz I., Schmidt M. A.. 1989; Cloning and expression of an adhesin (Aida-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect Immun57:1506–1511
    [Google Scholar]
  4. Benz I., Schmidt M. A.. 1992; Isolation and serologic characterization of Aida-I, the adhesin mediating the diffuse adherence phenotype of the diarrhea-associated Escherichia coli strain-2787 (O126 : H27. Infect Immun60:13–18
    [Google Scholar]
  5. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K.. & other authors. 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1462
    [Google Scholar]
  6. Brunder W., Schmidt H., Karch H.. 1997; EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157 : H7 cleaves human coagulation factor V. Mol Microbiol24:767–778
    [Google Scholar]
  7. Chen S. L., Hung C.-S., Xu J., Reigstad C. S., Magrini V., Sabo A., Blasiar D., Bieri T., Meyer R. R.. other authors 2006; Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A103:5977–5982
    [Google Scholar]
  8. Cotter S. E., Surana N. K., St Geme J. W.. 2005; Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol13:199–205
    [Google Scholar]
  9. Desvaux M., Parham N. J., Henderson I. R.. 2004; The autotransporter secretion system. Res Microbiol155:53–60
    [Google Scholar]
  10. Djafari S., Ebel F., Deibel C., Kramer S., Hudel M., Chakraborty T.. 1997; Characterization of an exported protease from Shiga toxin-producing Escherichia coli. Mol Microbiol25:771–784
    [Google Scholar]
  11. Eichler E. E.. 2001; Segmental duplications: what's missing, misassigned, and misassembled – and should we care?. Genome Res11:653–656
    [Google Scholar]
  12. Elsinghorst E. A., Weitz J. A.. 1994; Epithelial-cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer-membrane protein. Infect Immun62:3463–3471
    [Google Scholar]
  13. Emsley P., McDermott G., Charles I. G., Fairweather N. F., Isaacs N. W.. 1994; Crystallographic characterization of pertactin, a membrane-associated protein from Bordetella pertussis. J Mol Biol235:772–773
    [Google Scholar]
  14. Emsley P., Charles I. G., Fairweather N. F., Isaacs N. W.. 1996; Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature381:90–92
    [Google Scholar]
  15. Eslava C., Navarro-Garcia F., Czeczulin J. R., Henderson I. R., Cravioto A., Nataro J. P.. 1998; Pet, an autotransporter enterotoxin from enteroaggregative Escherichia coli. Infect Immun66:3155–3163
    [Google Scholar]
  16. Fernandez R. C., Weiss A. A.. 1994; Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect Immun62:4727–4738
    [Google Scholar]
  17. Guyer D. M., Henderson I. R., Nataro J. P., Mobley H. L. T.. 2000; Identification of Sat, an autotransporter toxin produced by uropathogenic Escherichia coli. Mol Microbiol38:53–66
    [Google Scholar]
  18. Guyer D. M., Radulovic S., Jones F. E., Mobley H. L. T.. 2002; Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells. Infect Immun70:4539–4546
    [Google Scholar]
  19. Hasman H., Chakraborty T., Klemm P.. 1999; Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol181:4834–4841
    [Google Scholar]
  20. Henderson I. R., Nataro J. P.. 2001; Virulence functions of autotransporter proteins. Infect Immun69:1231–1243
    [Google Scholar]
  21. Henderson I. R., Owen P.. 1999; The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and OxyR. J Bacteriol181:2132–2141
    [Google Scholar]
  22. Henderson I. R., Navarro-Garcia F., Nataro J. P.. 1998; The great escape: structure and function of the autotransporter proteins. Trends Microbiol6:370–378
    [Google Scholar]
  23. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D.. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev68:692–744
    [Google Scholar]
  24. Hochhut B., Wilde C., Balling G., Middendorf B., Dobrindt U., Brzuszkiewicz E., Gottschalk G., Carniel E., Hacker J.. 2006; Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol61:584–595
    [Google Scholar]
  25. Hoiczyk E., Roggenkamp A., Reichenbecher M., Lupas A., Heesemann J.. 2000; Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J19:5989–5999
    [Google Scholar]
  26. Ieva R., Bernstein H. D.. 2009; Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. Proc Natl Acad Sci U S A106:19120–19125
    [Google Scholar]
  27. Iguchi A., Thomson N. R., Ogura Y., Saunders D., Ooka T., Henderson I. R., Harris D., Asadulghani M., Kurokawa K.. other authors 2009; Complete genome sequence and comparative genome analysis of enteropathogenic Escherichia coli O127 : H6 strain E2348/69. J Bacteriol191:347–354
    [Google Scholar]
  28. Johnson T. J., Wannemeuhler Y. M., Scaccianoce J. A., Johnson S. J., Nolan L. K.. 2006; Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother50:3929–3933
    [Google Scholar]
  29. Jose J., Jahnig F., Meyer T. F.. 1995; Common structural features of Iga1 protease-like outer-membrane protein autotransporters. Mol Microbiol18:378–380
    [Google Scholar]
  30. Kajava A. V., Cheng N., Cleaver R., Kessel M., Simon M. N., Willery E., Jacob-Dubuisson F., Locht C., Steven A. C.. 2001; Beta-helix model for the filamentous haemagglutinin adhesin of Bordetella pertussis and related bacterial secretory proteins. Mol Microbiol42:279–292
    [Google Scholar]
  31. Kjaergaard K., Schembri M. A., Ramos C., Molin S., Klemm P.. 2000; Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol2:695–702
    [Google Scholar]
  32. Klemm P., Hjerrild L., Gjermansen M., Schembri M. A.. 2004; Structure–function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol51:283–296
    [Google Scholar]
  33. Klemm P., Vejborg R. M., Sherlock O.. 2006; Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol296:187–195
    [Google Scholar]
  34. Leyton D. L., Sloan J., Hill R. E., Doughty S., Hartland E. L.. 2003; Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter, EpeA. Infect Immun71:6307–6319
    [Google Scholar]
  35. Leyton D. L., Adams L. M., Kelly M., Sloan J., Tauschek M., Robins-Browne R. M., Hartland E. L.. 2007; Contribution of a novel gene, rpeA, encoding a putative autotransporter adhesin to intestinal colonization by rabbit-specific enteropathogenic Escherichia coli. Infect Immun75:4664–4669
    [Google Scholar]
  36. Li G., Feng Y., Kariyawasam S., Tivendale K. A., Wannemuehler Y., Zhou F., Logue C. M., Miller C. L., Nolan L. K.. 2010; AatA is a novel autotransporter and virulence factor of avian pathogenic Escherichia coli. Infect Immun78:898–906
    [Google Scholar]
  37. Lindenthal C., Elsinghorst E. A.. 2001; Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells. Infect Immun69:52–57
    [Google Scholar]
  38. Linke D., Riess T., Autenrieth I. B., Lupas A., Kempf V. A. J.. 2006; Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol14:264–270
    [Google Scholar]
  39. Loomis W. F., Fuller D. L.. 1990; A pair of tandemly repeated genes code for gp24, a putative adhesion protein of Dictyostelium discoideum. Proc Natl Acad Sci U S A87:886–890
    [Google Scholar]
  40. Loveless B. J., Saier M. H.. 1997; A novel family of channel-forming, autotransporting, bacterial virulence factors. Mol Membr Biol14:113–123
    [Google Scholar]
  41. Lu Y., Iyoda S., Satou H., Satou H., Itoh K., Saitoh T., Watanabe H.. 2006; A new immunoglobulin-binding protein, EibG, is responsible for the chain-like adhesion phenotype of locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect Immun74:5747–5755
    [Google Scholar]
  42. Luthje P., Brauner A.. 2010; Putative link between the virulence-associated fluA gene and fluoroquinolone resistance in uropathogenic Escherichia coli. J Clin Microbiol48:675–676
    [Google Scholar]
  43. Makino K., Yokoyama K., Kubota Y., Yutsudo C. H., Kimura S., Kurokawa K., Ishii K., Hattori M., Tatsuno I.. other authors 1999; Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157 : H7 derived from the Sakai outbreak. Genes Genet Syst74:227–239
    [Google Scholar]
  44. Mellies J. L., Navarro-Garcia F., Okeke I., Frederickson J., Nataro J. P., Kaper J. B.. 2001; espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect Immun69:315–324
    [Google Scholar]
  45. Naylor S. W., Low J. C., Besser T. E., Mahajan A., Gunn G. J., Pearce M. C., McKendrick I. J., Smith D. G., Gally D. L.. 2003; Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157 : H7 in the bovine host. Infect Immun71:1505–1512
    [Google Scholar]
  46. Nummelin H., Merckel M. C., Leo J. C., Lankinen H., Skurnik M., Goldman A.. 2004; The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel β-roll. EMBO J23:701–711
    [Google Scholar]
  47. Otto B. R., van Dooren S. J. M., Nuijens J. H., Luirink J., Oudega B.. 1998; Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J Exp Med188:1091–1103
    [Google Scholar]
  48. Parham N. J., Srinivasan U., Desvaux M., Foxman B., Marrs C. F., Henderson I. R.. 2004; PicU, a second serine protease autotransporter of uropathogenic Escherichia coli. FEMS Microbiol Lett230:73–83
    [Google Scholar]
  49. Patel S. K., Dotson J., Allen K. P., Fleckenstein J. M.. 2004; Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun72:1786–1794
    [Google Scholar]
  50. Paton A. W., Srimanote P., Woodrow M. C., Paton J. C.. 2001; Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun69:6999–7009
    [Google Scholar]
  51. Perna N. T., Plunkett G. III, Burland V., Mau B., Glasner J. D., Rose D. J., Mayhew G. F., Evans P. S., Gregor J.. other authors 2001; Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature409:529–533
    [Google Scholar]
  52. Provence D. L., Curtiss R.. 1994; Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun62:1369–1380
    [Google Scholar]
  53. Relman D. A., Domenighini M., Tuomanen E., Rappuoli R., Falkow S.. 1989; Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A86:2637–2641
    [Google Scholar]
  54. Reyrat J. M., Pelicic V., Papini E., Montecucco C., Rappuoli R., Telford J. L.. 1999; Towards deciphering the Helicobacter pylori cytotoxin. Mol Microbiol34:197–204
    [Google Scholar]
  55. Riess T., Andersson S. G., Lupas A., Schaller M., Schäfer A., Kyme P., Martin J., Wälzlein J. H., Ehehalt U.. other authors 2004; Bartonella adhesin a mediates a proangiogenic host cell response. Exp Med200:1267–1278
    [Google Scholar]
  56. Roggenkamp A., Ackermann N., Jacobi C. A., Truelzsch K., Hoffmann H., Heesemann H.. 2003; Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J Bacteriol185:3735–3744
    [Google Scholar]
  57. Roux A., Beloin C., Ghigo J. M.. 2005; Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins. J Bacteriol187:1001–1013
    [Google Scholar]
  58. Ruiz-Perez F., Henderson I. R., Leyton D. L., Rossiter A. E., Zhang Y. H., Nataro J. P.. 2009; Roles of periplasmic chaperone proteins in the biogenesis of serine protease autotransporters of Enterobacteriaceae. J Bacteriol191:6571–6583
    [Google Scholar]
  59. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425
    [Google Scholar]
  60. Salzberg S. L., Yorke J. A.. 2005; Beware of mis-assembled genomes. Bioinformatics21:4320–4321
    [Google Scholar]
  61. Sandt C. H., Hill C. W.. 2000; Four different genes responsible for nonimmune immunoglobulin-binding activities within a single strain of Escherichia coli. Infect Immun68:2205–2214
    [Google Scholar]
  62. Sandt C. H., Hill C. W.. 2001; Nonimmune binding of human immunoglobulin A (IgA) and IgG Fc by distinct sequence segments of the EibF cell surface protein of Escherichia coli. Infect Immun69:7293–7303
    [Google Scholar]
  63. Sandt C. H., Wang Y. D., Wilson R. A., Hill C. W.. 1997; Escherichia coli strains with nonimmune immunoglobulin-binding activity. Infect Immun65:4572–4579
    [Google Scholar]
  64. Sauri A., Soprova Z., Wickstrom D., de Gier J.-W., Van der Schors R. C., Smit A. B., Jong W. S. P., Luirink J.. 2009; The Bam (Omp85) complex is involved in secretion of the autotransporter haemoglobin protease. Microbiology155:3982–3991
    [Google Scholar]
  65. Sherlock O., Schembri M. A., Reisner A., Klemm P.. 2004; Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol186:8058–8065
    [Google Scholar]
  66. Sherlock O., Vejborg R. M., Klemm P.. 2005; The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun73:1954–1963
    [Google Scholar]
  67. Stein M., Kenny B., Stein M. A., Finlay B. B.. 1996; Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins. J Bacteriol178:6546–6554
    [Google Scholar]
  68. Surana N. K., Cutter D., Barenkamp S. J., St Geme J. W.. 2004; The Haemophilus influenzae Hia autotransporter contains an unusually short trimeric translocator domain. J Biol Chem279:14679–14685
    [Google Scholar]
  69. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  70. Torres A. G., Perna N. T., Burland V., Ruknudin A., Blattner F. R., Kaper J. B.. 2002; Characterization of Cah, a calcium-binding and heat-extractable autotransporter protein of enterohaemorrhagic Escherichia coli. Mol Microbiol45:951–966
    [Google Scholar]
  71. Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C.. other authors 2009; Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet5:e1000344
    [Google Scholar]
  72. Ulett G. C., Webb R. I., Schembri M. A.. 2006; Antigen-43-mediated autoaggregation impairs motility in Escherichia coli. Microbiology152:2101–2110
    [Google Scholar]
  73. Ulett G. C., Mabbett A. N., Fung K. C., Webb R. I., Schembri M. A.. 2007; The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology153:2321–2331
    [Google Scholar]
  74. Valle J., Mabbett A. N., Ulett G. C., Toledo-Arana A., Wecker K., Totsika M., Schembri M. A., Ghigo J.-M., Beloin C.. 2008; UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol190:4147–4161
    [Google Scholar]
  75. Wagner J. K., Heindl J. E., Gray A. N., Jain S., Goldberg M. B.. 2009; Contribution of the periplasmic chaperone Skp to efficient presentation of the autotransporter IcsA on the surface of Shigella flexneri. J Bacteriol191:815–821
    [Google Scholar]
  76. Welch R. A., Burland V., Plunkett G., Redford P., Roesch P., Rasko D., Buckles E. L., Liou S. R., Boutin A.. other authors 2002; Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A99:17020–17024
    [Google Scholar]
  77. Wells T. J., Sherlock O., Rivas L., Mahajan A., Beatson S. A., Torpdahl M., Webb R. I., Allsopp L. P., Gobius K. S.. other authors 2008; EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157 : H7 that contributes to adhesion and biofilm formation. Environ Microbiol10:589–604
    [Google Scholar]
  78. Wells T. J., McNeilly T. N., Totsika M., Mahajan A., Gally D. L., Schembri M. A.. 2009; The Escherichia coli O157 : H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157 : H7 challenged cattle. Environ Microbiol11:1803–1814
    [Google Scholar]
  79. Yen M. R., Peabody C. R., Partovi S. M., Zhai Y. F., Tseng Y. H., Saier M. H.. 2002; Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta1562:6–31
    [Google Scholar]
  80. Yeo H. J., Cotter S. E., Laarmann S., Juehne T., St Geme J. W., Waksman G.. 2004; Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J23:1245–1256
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.039024-0
Loading
/content/journal/micro/10.1099/mic.0.039024-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error