1887

Abstract

Natural rubber [poly-(-1,4-isoprene)] is cleaved to 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD) by rubber oxygenase A (RoxA) isolated from sp. RoxA has two -type haem centres that show two distinct -bands at 549 and 553 nm in the dithionite-reduced state. A well-resolved midpoint potential ( ′) of –65 mV was determined for one haem by spectrophotometric titrations in the absence of dioxygen with dithionite and ferricyanide as reductant and oxidant, respectively. The midpoint potential of the second haem was not resolvable ( ′ about −130 to –160 mV). One of the two haems was reduced by NADH (549 nm -band), similar to bacterial dihaem peroxidases. Evidence for an electron transfer between the two haems was provided by slow reduction of the second haem (553 nm -band) upon incubation of the partially reduced enzyme at room temperature. Addition of imidazole or related compounds to RoxA led to UV/vis spectral features similar to those observed for partially reduced RoxA. Notably, reduction of RoxA with dithionite or NADH, or binding of compounds such as imidazole, resulted in a reversible inactivation of the enzyme, unlike dihaem peroxidases. In line with this result, RoxA did not show any peroxidase activity. EPR spectra of RoxA as isolated showed two low-spin Fe(III) haem centres, with apparent -values of 3.39, 3.09, 2.23, 1.92 and 1.50. A weak signal in the =6 region resulting from a high-spin Fe(III) haem was also observed with a preparation-dependent intensity that disappeared in the presence of imidazole. Attempts to provide spectroscopic evidence for binding of the natural substrate (polyisoprene latex) to RoxA failed. However, experimental data are presented that RoxA is able to subtract redox equivalents from its substrate or from model compounds. In conclusion, RoxA is a novel type of dihaem dioxygenase with features clearly different from classical cytochrome peroxidases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038992-0
2010-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2537.html?itemId=/content/journal/micro/10.1099/mic.0.038992-0&mimeType=html&fmt=ahah

References

  1. Arciero D. M., Hooper A. B. 1994; A di-heme cytochrome c peroxidase from Nitrosomonas europaea catalytically active in both the oxidized and half-reduced states. J Biol Chem 269:11878–11886
    [Google Scholar]
  2. Arslan E., Schulz H., Zufferey R., Kunzler P., Thöny-Meyer L. 1998; Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem Biophys Res Commun 251:744–747
    [Google Scholar]
  3. Behrends A., Klingbeil B., Jendrossek D. 1996; Poly(3-hydroxybutyrate) depolymerases bind to their substrate by a C-terminal located substrate binding site. FEMS Microbiol Lett 143:191–194
    [Google Scholar]
  4. Bode H. B., Zeeck A., Plückhahn K., Jendrossek D. 2000; Physiological and chemical investigations into microbial degradation of synthetic poly( cis-1,4-isoprene. Appl Environ Microbiol 66:3680–3685
    [Google Scholar]
  5. Bode H. B., Kerkhoff K., Jendrossek D. 2001; Bacterial degradation of natural and synthetic rubber. Biomacromolecules 2:295–303
    [Google Scholar]
  6. Braaz R., Fischer P., Jendrossek D. 2004; Novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly- cis-1,4-isoprene. Appl Environ Microbiol 70:7388–7395
    [Google Scholar]
  7. Braaz R., Armbruster W., Jendrossek D. 2005; Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of poly( cis-1,4-isoprene) by a dioxygenase mechanism. Appl Environ Microbiol 71:2473–2478
    [Google Scholar]
  8. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  9. Echalier A., Goodhew C. F., Pettigrew G. W., Fulop V. 2006; Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus. Structure 14:107–117
    [Google Scholar]
  10. Echalier A., Brittain T., Wright J., Boycheva S., Mortuza G. B., Fulop V., Watmough N. J. 2008; Redox-linked structural changes associated with the formation of a catalytically competent form of the diheme cytochrome c peroxidase from Pseudomonas aeruginosa. Biochemistry 47:1947–1956
    [Google Scholar]
  11. Ellfolk N., Ronnberg M., Aasa R., Andreasson L. E., Vanngard T. 1983; Properties and function of the two hemes in Pseudomonas cytochrome c peroxidase. Biochim Biophys Acta 743:23–30
    [Google Scholar]
  12. Fritz G., Griesshaber D., Seth O., Kroneck P. M. 2001; Nonaheme cytochrome c, a new physiological electron acceptor for [Ni,Fe] hydrogenase in the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex: primary sequence, molecular parameters, and redox properties. Biochemistry 40:1317–1324
    [Google Scholar]
  13. Fülöp V., Ridout C. J., Greenwood C., Hajdu J. 1995; Crystal structure of the di-haem cytochrome c peroxidase from Pseudomonas aeruginosa. Structure 3:1225–1233
    [Google Scholar]
  14. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C. Jr, Warren R. A. 1991; Domains in microbial beta-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315
    [Google Scholar]
  15. Gilmour R., Goodhew C. F., Pettigrew G. W., Prazeres S., Moura J. J., Moura I. 1994; The kinetics of the oxidation of cytochrome c by Paracoccus cytochrome c peroxidase. Biochem J 300:907–914
    [Google Scholar]
  16. Hambsch N., Schmitt G., Jendrossek D. 2010; Development of a homologous expression system for rubber oxygenase RoxA from Xanthomonas sp. J Appl Microbiol (in press)
    [Google Scholar]
  17. Heitmann D., Einsle O. 2005; Structural and biochemical characterization of DHC2, a novel diheme cytochrome c from Geobacter sulfurreducens. Biochemistry 44:12411–12419
    [Google Scholar]
  18. Hiraishi T., Komiya N., Matsumoto N., Abe H., Fujita M., Maeda M. 2010; Degradation and adsorption characteristics of PHB depolymerase as revealed by kinetics of mutant enzymes with amino acid substitution in substrate-binding domain. Biomacromolecules 11:113–119
    [Google Scholar]
  19. Hopkins N., Williams C. H. Jr 1995; Lipoamide dehydrogenase from Escherichia coli lacking the redox active disulfide: C44S and C49S. Redox properties of the FAD and interactions with pyridine nucleotides. Biochemistry 34:11766–11776
    [Google Scholar]
  20. Jendrossek D., Reinhardt S. 2003; Sequence analysis of a gene product synthesized by Xanthomonas sp. during growth on natural rubber latex. FEMS Microbiol Lett 224:61–65
    [Google Scholar]
  21. Jendrossek D., Tomasi G., Kroppenstedt R. M. 1997; Bacterial degradation of natural rubber: a privilege of actinomycetes?. FEMS Microbiol Lett 150:179–188
    [Google Scholar]
  22. Katz I., Keeney M. 1966; Quantitative micro determination and isolation of plasmalogen aldehydes as 2,4-dinitrophenylhydrazones. J Lipid Res 7:170–174
    [Google Scholar]
  23. Kobayashi K., Hayashi K., Sono M. 1989; Effects of tryptophan and pH on the kinetics of superoxide radical binding to indoleamine 2,3-dioxygenase studied by pulse radiolysis. J Biol Chem 264:15280–15283
    [Google Scholar]
  24. Li X., Feng M., Wang Y., Tachikawa H., Davidson V. L. 2006; Evidence for redox cooperativity between c-type hemes of MauG which is likely coupled to oxygen activation during tryptophan tryptophylquinone biosynthesis. Biochemistry 45:821–828
    [Google Scholar]
  25. Linos A., Steinbüchel A., Sproer C., Kroppenstedt R. M. 1999; Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int J Syst Bacteriol 49:1785–1791
    [Google Scholar]
  26. Linos A., Berekaa M. M., Steinbüchel A., Kim K. K., Sproer C., Kroppenstedt R. M. 2002; Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int J Syst Evol Microbiol 52:1133–1139
    [Google Scholar]
  27. Mason M. G., Ball A. S., Reeder B. J., Silkstone G., Nicholls P., Wilson M. T. 2001; Extracellular heme peroxidases in actinomycetes: a case of mistaken identity. Appl Environ Microbiol 67:4512–4519
    [Google Scholar]
  28. Massey V., Hemmerich P. 1978; Photoreduction of flavoproteins and other biological compounds catalyzed by deazaflavins. Biochemistry 17:9–16
    [Google Scholar]
  29. McGinnity D. F., Devreese B., Prazeres S., Van Beeumen J., Moura I., Moura J. J., Pettigrew G. W. 1996; A single histidine is required for activity of cytochrome c peroxidase from Paracoccus denitrificans. J Biol Chem 271:11126–11133
    [Google Scholar]
  30. Neese F. 1995; The EPR program. . Quantum Chemistry Program Exchange Bulletin 15:5
    [Google Scholar]
  31. Palmer G. 1983 Electron Paramagnetic Resonance of Hemoproteins Reading, MA: Addison-Wesley;
  32. Pauleta S. R., Lu Y., Goodhew C. F., Moura I., Pettigrew G. W., Shelnutt J. A. 2001; Calcium-dependent conformation of a heme and fingerprint peptide of the diheme cytochrome c peroxidase from Paracoccus pantotrophus. Biochemistry 40:6570–6579
    [Google Scholar]
  33. Pauleta S. R., Lu Y., Goodhew C. F., Moura I., Pettigrew G. W., Shelnutt J. A. 2008; Calcium-dependent heme structure in the reduced forms of the bacterial cytochrome c peroxidase from Paracoccus pantotrophus. Biochemistry 47:5841–5850
    [Google Scholar]
  34. Rodriguez-Sanoja R., Oviedo N., Sanchez S. 2005; Microbial starch-binding domain. Curr Opin Microbiol 8:260–267
    [Google Scholar]
  35. Rose K., Steinbüchel A. 2005; Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71:2803–2812
    [Google Scholar]
  36. Rose K., Tenberge K. B., Steinbüchel A. 2005; Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly( cis-1,4-isoprene) rubber degradation. Biomacromolecules 6:180–188
    [Google Scholar]
  37. Ryle M. J., Liu A., Muthukumaran R. B., Ho R. Y., Koehntop K. D., McCracken J., Que L. Jr, Hausinger R. P. 2003; O2- and α-ketoglutarate-dependent tyrosyl radical formation in TauD, an α-keto acid-dependent non-heme iron dioxygenase. Biochemistry 42:1854–1862
    [Google Scholar]
  38. Schrempf H. 1999; Characteristics of chitin-binding proteins from streptomycetes. EXS 87:99–108
    [Google Scholar]
  39. Shimizu H., Schuller D. J., Lanzilotta W. N., Sundaramoorthy M., Arciero D. M., Hooper A. B., Poulos T. L. 2001; Crystal structure of Nitrosomonas europaea cytochrome c peroxidase and the structural basis for ligand switching in bacterial di-heme peroxidases. Biochemistry 40:13483–13490
    [Google Scholar]
  40. Shinomiya M., Iwata T., Doi Y. 1998; The adsorption of substrate-binding domain of PHB depolymerases to the surface of poly(3-hydroxybutyric acid. Int J Biol Macromol 22:129–135
    [Google Scholar]
  41. Siegbahn P. E., Haeffner F. 2004; Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. J Am Chem Soc 126:8919–8932
    [Google Scholar]
  42. Su C., Sahlin M., Oliw E. H. 1998; A protein radical and ferryl intermediates are generated by linoleate diol synthase, a ferric hemeprotein with dioxygenase and hydroperoxide isomerase activities. J Biol Chem 273:20744–20751
    [Google Scholar]
  43. Tanaka Y., Sakdapipanich J. T. 2001; Chemical structure and occurrence of natural polyisoprenes. In Biopolymers , vol. 2 ( Polyisoprenoids) pp 1–25 Edited by Steinbüchel A. Weinheim, Germany: Wiley-VCH;
    [Google Scholar]
  44. Thomas S. R., Stocker R. 1999; Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep 4:199–220
    [Google Scholar]
  45. Thöny-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  46. Tsuchii A., Takeda K. 1990; Rubber-degrading enzyme from bacterial culture. Appl Environ Microbiol 56:269–274
    [Google Scholar]
  47. Tsuchii A., Suzuki T., Takeda K. 1985; Microbial degradation of natural rubber vulcanisates. Appl Environ Microbiol 50:965–970
    [Google Scholar]
  48. Walker F. A. 1999; Magnetic spectroscopy (EPR, ESEEM, Mösbauer, MCD, and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coord Chem Rev 185:186471–534
    [Google Scholar]
  49. Wang Y., Graichen M. E., Liu A., Pearson A. R., Wilmot C. M., Davidson V. L. 2003; MauG, a novel diheme protein required for tryptophan tryptophylquinone biogenesis. Biochemistry 42:7318–7325
    [Google Scholar]
  50. Wariishi H., Nonaka D., Johjima T., Nakamura N., Naruta Y., Kubo S., Fukuyama K. 2000; Direct binding of hydroxylamine to the heme iron of Arthromyces ramosus peroxidase. Substrate analogue that inhibits compound I formation in a competitive manner. J Biol Chem 275:32919–32924
    [Google Scholar]
  51. Zahn J. A., Arciero D. M., Hooper A. B., Coats J. R., DiSpirito A. A. 1991; Cytochrome c peroxidase from Methylococcus capsulatus Bath. Arch Microbiol 168:362–372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038992-0
Loading
/content/journal/micro/10.1099/mic.0.038992-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error