1887

Abstract

strain 2.4.3, when lacking the oxidase, is unable to transition from aerobic respiration to denitrification using cellular respiration as a means of reducing oxygen levels. This is due to an inability to express , the gene encoding nitrite reductase. Under certain photosynthetic conditions this strain can transition from aerobic to nitrate respiration, demonstrating that expression can occur in the absence of a functional oxidase. If oxygen levels are reduced under non-photosynthetic conditions using low-oxygen gas mixes, nitrite reductase activity is detected at wild-type levels in the strain lacking the oxidase. In addition, co-culture experiments show that incubation of the deficient strain 2.4.3 with 2.4.1, which is deficient but has the high-affinity oxidase, restores denitrification in sealed-vessel experiments. Taken together these results indicate that high end-point O levels are the reason why the strain lacking the oxidase cannot transition from aerobic respiration to denitrification under certain conditions. The protein probably being affected by these O levels is the transcriptional regulator NnrR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038703-0
2010-10-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3158.html?itemId=/content/journal/micro/10.1099/mic.0.038703-0&mimeType=html&fmt=ahah

References

  1. Baek, S. H., Hartsock, A. & Shapleigh, J. P. ( 2008; ). Agrobacterium tumefaciens C58 uses ActR and FnrN to control nirK and nor expression. J Bacteriol 190, 78–86.[CrossRef]
    [Google Scholar]
  2. Bartnikas, T. B., Tosques, I. E., Laratta, W. P., Shi, J. & Shapleigh, J. P. ( 1997; ). Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179, 3534–3540.
    [Google Scholar]
  3. Bedmar, E. J., Robles, E. F. & Delgado, M. J. ( 2005; ). The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem Soc Trans 33, 141–144.[CrossRef]
    [Google Scholar]
  4. Chung, C. T., Niemela, S. L. & Miller, R. H. ( 1989; ). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86, 2172–2175.[CrossRef]
    [Google Scholar]
  5. Daldal, F., Mandaci, S., Winterstein, C., Myllykallio, H., Duyck, K. & Zannoni, D. ( 2001; ). Mobile cytochrome c 2 and membrane-anchored cytochrome c Y are both efficient electron donors to the cbb 3- and aa 3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J Bacteriol 183, 2013–2024.[CrossRef]
    [Google Scholar]
  6. de Bruijn, F. J., Rossbach, S., Bruand, C. & Parrish, J. R. ( 2006; ). A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environ Microbiol 8, 1371–1381.[CrossRef]
    [Google Scholar]
  7. Eraso, J. M., Roh, J. H., Zeng, X., Callister, S. J., Lipton, M. S. & Kaplan, S. ( 2008; ). Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 190, 4831–4848.[CrossRef]
    [Google Scholar]
  8. Forte, E., Urbani, A., Saraste, M., Sarti, P., Brunori, M. & Giuffrè, A. ( 2001; ). The cytochrome cbb 3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Eur J Biochem 268, 6486–6491.[CrossRef]
    [Google Scholar]
  9. Giardina, G., Rinaldo, S., Johnson, K. A., Di Matteo, A., Brunori, M. & Cutruzzola, F. ( 2008; ). NO sensing in Pseudomonas aeruginosa: structure of the transcriptional regulator DNR. J Mol Biol 378, 1002–1015.[CrossRef]
    [Google Scholar]
  10. Hartsock, A. & Shapleigh, J. P. ( 2010; ). Identification, functional studies, and genomic comparisons of new members of the NnrR regulon in Rhodobacter sphaeroides. J Bacteriol 192, 903–911.[CrossRef]
    [Google Scholar]
  11. Hughes, M. N. ( 2008; ). Chemistry of nitric oxide and related species. Methods Enzymol 436, 3–19.
    [Google Scholar]
  12. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  13. Kwiatkowski, A. V. & Shapleigh, J. P. ( 1996; ). Requirement of nitric oxide for induction of genes whose products are involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Biol Chem 271, 24382–24388.[CrossRef]
    [Google Scholar]
  14. Kwiatkowski, A. V., Laratta, W. P., Toffanin, A. & Shapleigh, J. P. ( 1997; ). Analysis of the role of the nnrR gene product in the response of Rhodobacter sphaeroides 2.4.1 to exogenous nitric oxide. J Bacteriol 179, 5618–5620.
    [Google Scholar]
  15. Laratta, W. P., Choi, P. S., Tosques, I. E. & Shapleigh, J. P. ( 2002; ). Involvement of the PrrB/PrrA two-component system in nitrite respiration in Rhodobacter sphaeroides 2.4.3: evidence for transcriptional regulation. J Bacteriol 184, 3521–3529.[CrossRef]
    [Google Scholar]
  16. Laratta, W. P., Nanaszko, M. J. & Shapleigh, J. P. ( 2006; ). Electron transfer to nitrite reductase of Rhodobacter sphaeroides 2.4.3: examination of cytochromes c 2 and c Y. Microbiology 152, 1479–1488.[CrossRef]
    [Google Scholar]
  17. Lee, Y. Y., Shearer, N. & Spiro, S. ( 2006; ). Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. Microbiology 152, 1461–1470.[CrossRef]
    [Google Scholar]
  18. Lueking, D. R., Fraley, R. T. & Kaplan, S. ( 1978; ). Intracytoplasmic membrane synthesis in synchronous cell populations of Rhodopseudomonas sphaeroides. J Biol Chem 253, 451–457.
    [Google Scholar]
  19. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  20. Morley, N., Baggs, E. M., Dorsch, P. & Bakken, L. ( 2008; ). Production of NO, N2O and N2 by extracted soil bacteria, regulation by and O2 concentrations. FEMS Microbiol Ecol 65, 102–112.[CrossRef]
    [Google Scholar]
  21. O'Gara, J. P., Eraso, J. M. & Kaplan, S. ( 1998; ). A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 180, 4044–4050.
    [Google Scholar]
  22. Oh, J. I. ( 2006; ). Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb 3 cytochrome c oxidase on its function. J Microbiol 44, 284–292.
    [Google Scholar]
  23. Oh, J. I., Ko, I. J. & Kaplan, S. ( 2004; ). Reconstitution of the Rhodobacter sphaeroides cbb 3-PrrBA signal transduction pathway in vitro. Biochemistry 43, 7915–7923.[CrossRef]
    [Google Scholar]
  24. Pappas, C. T., Sram, J., Moskvin, O. V., Ivanov, P. S., Mackenzie, R. C., Choudhary, M., Land, M. L., Larimer, F. W., Kaplan, S. & Gomelsky, M. ( 2004; ). Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: transcriptome flexibility at diverse growth modes. J Bacteriol 186, 4748–4758.[CrossRef]
    [Google Scholar]
  25. Patel, R. P., McAndrew, J., Sellak, H., White, C. R., Jo, H., Freeman, B. A. & Darley-Usmar, V. ( 1999; ). Biological aspects of reactive nitrogen species. Biochim Biophys Acta 1411, 385–400.[CrossRef]
    [Google Scholar]
  26. Preisig, O., Zufferey, R., Thony-Meyer, L., Appleby, C. A. & Hennecke, H. ( 1996; ). A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178, 1532–1538.
    [Google Scholar]
  27. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  28. Ranson-Olson, B. & Zeilstra-Ryalls, J. ( 2008; ). Regulation of the Rhodobacter sphaeroides 2.4.1 hemA gene by PrrA and FnrL. J Bacteriol 190, 6769–6778.[CrossRef]
    [Google Scholar]
  29. Riistama, S., Puustinen, A., Verkhovsky, M. I., Morgan, J. E. & Wikstrom, M. ( 2000; ). Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39, 6365–6372.[CrossRef]
    [Google Scholar]
  30. Risgaard-Petersen, N., Langezaal, A. M., Ingvardsen, S., Schmid, M. C., Jetten, M. S., Op, C., Derksen, J. W., Pina-Ochoa, E., Eriksson, S. P. & other authors ( 2006; ). Evidence for complete denitrification in a benthic foraminifer. Nature 443, 93–96.[CrossRef]
    [Google Scholar]
  31. Simon, R.,Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vitro genetic engineering: transposon mutagenesis in gram negative bacteria. Nature Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  32. Spiro, S. ( 2007; ). Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 31, 193–211.[CrossRef]
    [Google Scholar]
  33. Tosques, I. E., Shi, J. & Shapleigh, J. P. ( 1996; ). Cloning and characterization of nnrR, whose product is required for the expression of proteins involved in nitric oxide metabolism in Rhodobacter sphaeroides 2.4.3. J Bacteriol 178, 4958–4964.
    [Google Scholar]
  34. Tosques, I. E., Kwiatkowski, A. V., Shi, J. & Shapleigh, J. P. ( 1997; ). Characterization and regulation of the gene encoding nitrite reductase in Rhodobacter sphaeroides 2.4.3. J Bacteriol 179, 1090–1095.
    [Google Scholar]
  35. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  36. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038703-0
Loading
/content/journal/micro/10.1099/mic.0.038703-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error