The mitochondrial genome of the pathogenic yeast : GC-rich linear DNA with a protein covalently attached to the 5′ termini Free

Abstract

As a part of our initiative aimed at a large-scale comparative analysis of fungal mitochondrial genomes, we determined the complete DNA sequence of the mitochondrial genome of the yeast and found that it exhibits a number of peculiar features. First, the mitochondrial genome is represented by linear dsDNA molecules of uniform length (29 795 bp), with an unusually high content of guanine and cytosine residues (52.7 %). Second, the coding sequences lack introns; thus, the genome has a relatively compact organization. Third, the termini of the linear molecules consist of long inverted repeats and seem to contain a protein covalently bound to terminal nucleotides at the 5′ ends. This architecture resembles the telomeres in a number of linear viral and plasmid DNA genomes classified as invertrons, in which the terminal proteins serve as specific primers for the initiation of DNA synthesis. Finally, although the mitochondrial genome of contains essentially the same set of genes as other closely related pathogenic species, we identified additional ORFs encoding two homologues of the family B protein-priming DNA polymerases and an unknown protein. The terminal structures and the genes for DNA polymerases are reminiscent of linear mitochondrial plasmids, indicating that this genome architecture might have emerged from fortuitous recombination between an ancestral, presumably circular, mitochondrial genome and an invertron-like element.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038646-0
2010-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2153.html?itemId=/content/journal/micro/10.1099/mic.0.038646-0&mimeType=html&fmt=ahah

References

  1. Adam H., Groenewald M., Mohan S., Richardson S., Bunn U., Gibas C. F., Poutanen S., Sigler L. 2009; Identification of a new species, Candida subhashii, as a cause of peritonitis. Med Mycol 47:305–311
    [Google Scholar]
  2. Anderson J. B., Wickens C., Khan M., Cowen L. E., Federspiel N., Jones T., Kohn L. M. 2001; Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol 183:865–872
    [Google Scholar]
  3. Blaisonneau J., Nosek J., Fukuhara H. 1999; Linear DNA plasmid pPK2 of Pichia kluyveri: distinction between cytoplasmic and mitochondrial linear plasmids in yeasts. Yeast 15:781–791
    [Google Scholar]
  4. Burger G., Lang B. F., Gray M. W. 2000; Phylogenetic relationships of stramenopile algae, based on complete mitochondrial genome sequences. Genbank Acc.no. AF287134
  5. Chan B. S., Court D. A., Vierula P. J., Bertrand H. 1991; The kalilo linear senescence-inducing plasmid of Neurospora is an invertron and encodes DNA and RNA polymerases. Curr Genet 20:225–237
    [Google Scholar]
  6. Coleman A. W., Thompson W., Goff L. J. 1991; Identification of the mitochondrial genome in the chrysophyte alga Ochromonas danica. J Eukaryot Microbiol 38:129–135
    [Google Scholar]
  7. Dieckmann C. L., Gandy B. 1987; Preferential recombination between GC clusters in yeast mitochondrial DNA. EMBO J 6:4197–4203
    [Google Scholar]
  8. Dinouel N., Drissi R., Miyakawa I., Sor F., Rousset S., Fukuhara H. 1993; Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 13:2315–2323
    [Google Scholar]
  9. Drummond A. J., Ashton B. M. C., Heled J., Kearse M., Moir R., Stones-Havas S., Thierer T., Wilson A. 2009 Geneious v4:8
    [Google Scholar]
  10. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797
    [Google Scholar]
  11. Fickett J. W. 1982; Recognition of protein coding regions in DNA sequences. Nucleic Acids Res 10:5303–5318
    [Google Scholar]
  12. Fitzpatrick D. A., Logue M. E., Stajich J. E., Butler G. 2006; A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99
    [Google Scholar]
  13. Forget L., Ustinova J., Wang Z., Huss V. A., Lang B. F. 2002; Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 19:310–319
    [Google Scholar]
  14. Foury F., Roganti T., Lecrenier N., Purnelle B. 1998; The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331
    [Google Scholar]
  15. Fukuhara H., Sor F., Drissi R., Dinouel N., Miyakawa I., Rousset S., Viola A. M. 1993; Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol 13:2309–2314
    [Google Scholar]
  16. Grigoriev A. 1998; Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res 26:2286–2290
    [Google Scholar]
  17. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704
    [Google Scholar]
  18. Handa H. 2008; Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions?. Mitochondrion 8:15–25
    [Google Scholar]
  19. Hermanns J., Osiewacz H. D. 1992; The linear mitochondrial plasmid pAL2-1 of a long-lived Podospora anserina mutant is an invertron encoding a DNA and RNA polymerase. Curr Genet 22:491–500
    [Google Scholar]
  20. Kayal E., Lavrov D. V. 2008; The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410:177–186
    [Google Scholar]
  21. Kim E. K., Jeong J. H., Youn H. S., Koo Y. B., Roe J. H. 2000; The terminal protein of a linear mitochondrial plasmid is encoded in the N-terminus of the DNA polymerase gene in white-rot fungus Pleurotus ostreatus. Curr Genet 38:283–290
    [Google Scholar]
  22. Klassen R., Meinhardt F. 2007; Linear protein-primed replicating plasmids in eukaryotic microbes. In Microbial Linear Plasmids pp 187–226 Edited by Meinhardt F., Klassen R. Berlin: Springer-Verlag;
    [Google Scholar]
  23. Lobry J. R. 1999; Genomic landscapes. Microbiology Today 26:164–165
    [Google Scholar]
  24. Longas E., de Vega M., Lazaro J. M., Salas M. 2006; Functional characterization of highly processive protein-primed DNA polymerases from phages Nf and GA-1, endowed with a potent strand displacement capacity. Nucleic Acids Res 34:6051–6063
    [Google Scholar]
  25. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964
    [Google Scholar]
  26. Maleszka R., Skelly P. J., Clark-Walker G. D. 1991; Rolling circle replication of DNA in yeast mitochondria. EMBO J 10:3923–3929
    [Google Scholar]
  27. Meinhardt F., Klassen R. 2007 Microbial Linear Plasmids Berlin: Springer-Verlag;
  28. Nicholas K. B., Nicholas H. B. J., Deerfield D. W. I. 1997; GeneDoc: analysis and visualization of genetic variation. EMBnet News 4:14
    [Google Scholar]
  29. Nosek J., Fukuhara H. 1994; NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630
    [Google Scholar]
  30. Nosek J., Tomaska L. 2002; Mitochondrial telomeres: alternative solutions to the end-replication problem. In Telomeres, Telomerases and Cancer pp 396–417 Edited by Krupp G., Parwaresch R. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  31. Nosek J., Tomaska L. 2003; Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44:73–84
    [Google Scholar]
  32. Nosek J., Tomaska L. 2008; Mitochondrial telomeres: an evolutionary paradigm for the emergence of telomeric structures and their replication strategies. In Origin and Evolution of Telomeres pp 163–171 Edited by Nosek J., Tomaska L. New York: Landes Bioscience;
    [Google Scholar]
  33. Nosek J., Dinouel N., Kovac L., Fukuhara H. 1995; Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247:61–72
    [Google Scholar]
  34. Nosek J., Tomaska L., Fukuhara H., Suyama Y., Kovac L. 1998; Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184–188
    [Google Scholar]
  35. Nosek J., Novotna M., Hlavatovicova Z., Ussery D. W., Fajkus J., Tomaska L. 2004; Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Mol Genet Genomics 272:173–180
    [Google Scholar]
  36. Nosek J., Rycovska A., Makhov A. M., Griffith J. D., Tomaska L. 2005; Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem 280:10840–10845
    [Google Scholar]
  37. Olovnikov A. M. 1973; A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190
    [Google Scholar]
  38. Rodriguez I., Lazaro J. M., Salas M., De Vega M. 2004; phi29 DNA polymerase–terminal protein interaction. Involvement of residues specifically conserved among protein-primed DNA polymerases. J Mol Biol 337:829–841
    [Google Scholar]
  39. Sakaguchi K. 1990; Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol Rev 54:66–74
    [Google Scholar]
  40. Salas M. 1991; Protein-priming of DNA replication. Annu Rev Biochem 60:39–71
    [Google Scholar]
  41. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  42. Schardl C. L., Lonsdale D. M., Pring D. R., Rose K. R. 1984; Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310:292–296
    [Google Scholar]
  43. Shao Z., Graf S., Chaga O. Y., Lavrov D. V. 2006; Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381:92–101
    [Google Scholar]
  44. Smith D. R. 2009; Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol 71:627–639
    [Google Scholar]
  45. Smith D. R., Lee R. W. 2008; Mitochondrial genome of the colorless green alga Polytomella capuana: a linear molecule with an unprecedented GC content. Mol Biol Evol 25:487–496
    [Google Scholar]
  46. Takano H., Kawano S., Kuroiwa T. 1994; Genetic organization of a linear mitochondrial plasmid (mF) that promotes mitochondrial fusion in Physarum polycephalum. Curr Genet 26:506–511
    [Google Scholar]
  47. Takano H., Mori K., Kawano S., Kuroiwa T. 1996; Rearrangements of mitochondrial DNA and the mitochondrial fusion-promoting plasmid (mF) are associated with defective mitochondrial fusion in Physarum polycephalum. Curr Genet 29:257–264
    [Google Scholar]
  48. Takeda M., Hiraishi H., Takesako T., Tanase S., Gunge N. 1996; The terminal protein of the linear DNA plasmid pGKL2 shares an N-terminal domain of the plasmid-encoded DNA polymerase. Yeast 12:241–246
    [Google Scholar]
  49. Tomaska L., Nosek J., Makhov A. M., Pastorakova A., Griffith J. D. 2000; Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28:4479–4487
    [Google Scholar]
  50. Tomaska L., Nosek J., Kramara J., Griffith J. D. 2009; Telomeric circles: universal players in telomere maintenance?. Nat Struct Mol Biol 16:1010–1015
    [Google Scholar]
  51. Truniger V., Bonnin A., Lazaro J. M., de Vega M., Salas M. 2005; Involvement of the “linker” region between the exonuclease and polymerization domains of phi29 DNA polymerase in DNA and TP binding. Gene 348:89–99
    [Google Scholar]
  52. Valach M., Tomaska L., Nosek J. 2008; Preparation of yeast mitochondrial DNA for direct sequence analysis. Curr Genet 54:105–109
    [Google Scholar]
  53. Vierula P. J., Cheng C. K., Court D. A., Humphrey R. W., Thomas D. Y., Bertrand H. 1990; The kalilo senescence plasmid of Neurospora intermedia has covalently-linked 5′ terminal proteins. Curr Genet 17:195–201
    [Google Scholar]
  54. Voigt O., Erpenbeck D., Worheide G. 2008; A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9:350
    [Google Scholar]
  55. Watson J. D. 1972; Origin of concatemeric T7 DNA. Nat New Biol 239:197–201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038646-0
Loading
/content/journal/micro/10.1099/mic.0.038646-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed