1887

Abstract

HpdR, an IclR-family regulator in , is a substrate-dependent repressor for the tyrosine catabolic gene . In this study, S1 nuclease protection assays revealed that is subject to a negative autoregulation. Purified HpdR showed specific DNA-binding activity for the promoter region of , indicating that the autoregulation of is performed directly. The disruption of led to reduced production of CDA by J1501, suggesting a positive effect of on CDA biosynthesis. Electrophoretic mobility shift assays showed that HpdR specifically bound to the promoter region of (SCO3229 in the CDA gene cluster), encoding 4-hydroxymandelic acid synthase. Disruption of in J1501 abolished CDA production. It is possible that regulates CDA biosynthesis by controlling the transcription of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038604-0
2010-09-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2641.html?itemId=/content/journal/micro/10.1099/mic.0.038604-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  3. Brownlee, J. M., Johnson-Winters, K., Harrison, D. H. & Moran, G. R. ( 2004; ). Structure of the ferrous form of (4-hydroxyphenol) pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Biochemistry 43, 6370–6377.[CrossRef]
    [Google Scholar]
  4. Chater, K. F. ( 1993; ). Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47, 685–713.[CrossRef]
    [Google Scholar]
  5. Chater, K. F. & Chandra, G. ( 2008; ). The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism, development and environmental adaptation in streptomyces. J Microbiol 46, 1–11.[CrossRef]
    [Google Scholar]
  6. Chater, K. F., Bruton, C. J., King, A. A. & Suarez, J. E. ( 1982; ). The expression of Streptomyces and Escherichia coli drug resistance determinants cloned into the Streptomyces phage PC31. Gene 19, 21–32.[CrossRef]
    [Google Scholar]
  7. Denoya, C. D., Skinner, D. D. & Morgenstern, M. R. ( 1994; ). A Streptomyces avermitilis gene encoding a 4-hydroxyphenylpyruvic acid dioxygenase-like protein that directs the production of homogentistic acid and ochronotic pigment in Escherichia coli. J Bacteriol 176, 5312–5319.
    [Google Scholar]
  8. Gui, L., Sunnarborg, A., Pan, B. & LaPorte, D. ( 1996; ). Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 178, 321–324.
    [Google Scholar]
  9. Gunsior, M., Ravel, J., Challis, G. L. & Townsend, C. A. ( 2004; ). Engineering 4-hydroxyphenolpyruvate dioxygenase to a p-hydroxymandelate synthesase and evidence for the proposed benzene oxide intermediate in homogentisate formation. Biochemistry 43, 663–674.[CrossRef]
    [Google Scholar]
  10. Hojati, Z., Milne, C., Harvey, B., Gordon, L., Borg, M., Flett, F., Wilkinson, B., Sidebottom, P. J., Rudd, B. A. M. & other authors ( 2002; ). Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem Biol 9, 1175–1187.[CrossRef]
    [Google Scholar]
  11. Johnson-Winters, K., Purpero, V. M., Kavana, M., Nelson, T. & Moran, G. R. ( 2003; ). (4-Hydroxyphenol) pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition. Biochemistry 42, 2072–2080.[CrossRef]
    [Google Scholar]
  12. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich. : John Innes Foundation.
    [Google Scholar]
  13. Kuhstoss, S. & Rao, R. N. ( 1991; ). Analysis of the integration function of the streptomycete bacteriophage φC31. J Mol Biol 222, 897–908.[CrossRef]
    [Google Scholar]
  14. Li, W., Ying, X., Guo, Y., Yu, Z., Zhou, X., Deng, Z., Kieser, H., Chater, K. F. & Tao, M. ( 2006; ). Identification of a gene negatively affecting antibiotic production and morphological differentiation in Streptomyces coelicolor A3(2). J Bacteriol 188, 8368–8375.[CrossRef]
    [Google Scholar]
  15. Li, R., Xie, Z., Tian, Y., Yang, H., Chen, W., You, D., Liu, G., Deng, Z. & Tan, H. ( 2009; ). polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi var. asoensis. Microbiology 155, 1819–1831.[CrossRef]
    [Google Scholar]
  16. Lipman, D. J. & Pearson, W. R. ( 1985; ). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef]
    [Google Scholar]
  17. Liu, G., Tian, Y., Yang, H. & Tan, H. ( 2005; ). A pathway-specific transcription regulational regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55, 1855–1866.[CrossRef]
    [Google Scholar]
  18. MacNeil, D. J., Gewain, K. M., Ruby, C. L., Dezeny, G., Gibbons, P. H. & MacNeil, T. ( 1992; ). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilising a novel integrating vector. Gene 111, 61–68.[CrossRef]
    [Google Scholar]
  19. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Labortory.
    [Google Scholar]
  20. Santamarta, I., López-García, M. T., Pérez-Redondo, R., Koekman, B., Martín, J. F. & Liras, P. ( 2007; ). Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the ARE (ccaR) sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol Microbiol 66, 511–524.[CrossRef]
    [Google Scholar]
  21. Tan, H., Tian, Y., Yang, H., Liu, G. & Nie, L. ( 2002; ). A novel Streptomyces gene, samR, with different effects on differentiation of Streptomyces ansochromogenes and Streptomyces coelicolor. Arch Microbiol 177, 274–278.[CrossRef]
    [Google Scholar]
  22. Tian, Y., Fowler, K., Findlay, K., Tan, H. & Chater, K. ( 2007; ). An unusual response regulator influences sporulation at early and late stages in Streptomyces coelicolor. J Bacteriol 189, 2873–2885.[CrossRef]
    [Google Scholar]
  23. Traag, B. A., Kelemen, G. H. & van Wezel, G. P. ( 2004; ). Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3(2). Mol Microbiol 53, 985–1000.[CrossRef]
    [Google Scholar]
  24. Wang, L., Tian, X., Wang, J., Yang, H., Fan, K., Xu, G., Yang, K. & Tan, H. ( 2009; ). Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 106, 8617–8622.[CrossRef]
    [Google Scholar]
  25. Yang, H., Wang, L., Xie, Z., Tian, Y., Liu, G. & Tan, H. ( 2007; ). The tyrosine degradation gene hppD is transcriptionally activated by HpdA and repressed by HpdR in Streptomyces coelicolor, while hpdA is negatively autoregulated and repressed by HpdR. Mol Microbiol 65, 1064–1077.[CrossRef]
    [Google Scholar]
  26. Yang, Y. H., Song, E., Kim, E. J., Lee, K., Kim, W. S., Park, S. S., Hahn, J. S. & Kim, B. G. ( 2009; ). NadR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82, 501–511.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038604-0
Loading
/content/journal/micro/10.1099/mic.0.038604-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error