1887

Abstract

The successful nitrogen-fixing symbiosis between the Gram-negative soil bacterium and its leguminous plant host alfalfa () requires the bacterial exopolysaccharide succinoglycan. Succinoglycan and flagellum production, along with the ability to metabolize more than 20 different carbon sources and control the expression of a large number of genes, is regulated by the ExoR–ExoS/ChvI signalling pathway. The ExoR protein interacts with and suppresses the sensing activities of ExoS, the membrane-bound sensor of the ExoS/ChvI two-component regulatory system. Here we show that expression is clearly upregulated in the absence of any functional ExoR protein. This upregulation was suppressed by the presence of the wild-type ExoR protein but not by a mutated ExoR protein lacking signal peptide. The levels of expression could be directly modified in real time by changing the levels of total ExoR protein. The expression of was also upregulated by the constitutively active sensor mutation , and blocked by two single mutations, and , in the ExoS sensing domain. Presence of the wild-type ExoS protein further elevated the levels of expression in the absence of functional ExoR protein, and reversed the effects of , and mutations. Altogether, these data suggest that ExoR protein autoregulates expression through the ExoS/ChvI system, allowing cells to maintain the levels of expression based on the amount of total ExoR protein.

Keyword(s): CF, calcofluor white
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038547-0
2010-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2092.html?itemId=/content/journal/micro/10.1099/mic.0.038547-0&mimeType=html&fmt=ahah

References

  1. Bahlawane C., McIntosh M., Krol E., Becker A. 2008; Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. Mol Plant Microbe Interact 21:1498–1509
    [Google Scholar]
  2. Belanger L., Dimmick K. A., Fleming J. S., Charles T. C. 2009; Null mutations in Sinorhizobium meliloti exoS and chvI demonstrate the importance of this two-component regulatory system for symbiosis. Mol Microbiol 74:1223–1237
    [Google Scholar]
  3. Brewin N. J. 1991; Development of the legume root nodule. Annu Rev Cell Biol 7:191–226
    [Google Scholar]
  4. Buelow D. R., Raivio T. L. 2005; Cpx signal transduction is influenced by a conserved N-terminal domain in the novel inhibitor CpxP and the periplasmic protease DegP. J Bacteriol 187:6622–6630
    [Google Scholar]
  5. Chen E. J., Sabio E. A., Long S. R. 2008; The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signaling in Sinorhizobium meliloti. Mol Microbiol 69:1290–1303
    [Google Scholar]
  6. Chen E. J., Fisher R. F., Perovich V. M., Sabio E. A., Long S. R. 2009; Identification of direct transcriptional target genes of ExoS/ChvI two-component signaling in Sinorhizobium meliloti. J Bacteriol 191:6833–6842
    [Google Scholar]
  7. Cheng H. P., Walker G. C. 1998a; Succinoglycan production by Rhizobium meliloti is regulated through the ExoS–ChvI two-component regulatory system. J Bacteriol 180:20–26
    [Google Scholar]
  8. Cheng H. P., Walker G. C. 1998b; Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191
    [Google Scholar]
  9. Cheng H. P., Yao S. Y. 2004; The key Sinorhizobium meliloti succinoglycan biosynthesis gene exoY is expressed from two promoters. FEMS Microbiol Lett 231:131–136
    [Google Scholar]
  10. Doherty D., Leigh J. A., Glazebrook J., Walker G. C. 1988; Rhizobium meliloti mutants that overproduce the R. meliloti acidic calcofluor-binding exopolysaccharide. J Bacteriol 170:4249–4256
    [Google Scholar]
  11. Dong J., Iuchi S., Kwan H. S., Lu Z., Lin E. C. 1993; The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia coli. Gene 136:227–230
    [Google Scholar]
  12. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72
    [Google Scholar]
  13. Fleischer R., Heermann R., Jung K., Hunke S. 2007; Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J Biol Chem 282:8583–8593
    [Google Scholar]
  14. Gage D. J. 2004; Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300
    [Google Scholar]
  15. Gage D. J., Bobo T., Long S. R. 1996; Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa ( Medicago sativa. J Bacteriol 178:7159–7166
    [Google Scholar]
  16. Gibson K. E., Kobayashi H., Walker G. C. 2008; Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441
    [Google Scholar]
  17. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  18. Hellweg C., Puhler A., Weidner S. 2009; The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 9:37
    [Google Scholar]
  19. Isaac D. D., Pinkner J. S., Hultgren S. J., Silhavy T. J. 2005; The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci U S A 102:17775–17779
    [Google Scholar]
  20. Jones K. M., Kobayashi H., Davies B. W., Taga M. E., Walker G. C. 2007; How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nat Rev Microbiol 5:619–633
    [Google Scholar]
  21. Krol E., Becker A. 2009; Surface polysaccharides as fitness factors of rhizospheric nitrogen-fixing bacteria. In Bacterial Polysaccharides: Current Innovations and Future Trends pp 189–211 Edited by Ullrich M. Norwich: Caister Academic Press;
    [Google Scholar]
  22. Leigh J. A., Walker G. C. 1994; Exopolysaccharides of Rhizobium: synthesis, regulation and symbiotic function. Trends Genet 10:63–67
    [Google Scholar]
  23. Leigh J. A., Signer E. R., Walker G. C. 1985; Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci U S A 82:6231–6235
    [Google Scholar]
  24. Long S. R. 1989; Rhizobium–legume nodulation: life together in the underground. Cell 56:203–214
    [Google Scholar]
  25. Long S. R. 2001; Genes and signals in the Rhizobium–legume symbiosis. Plant Physiol 125:69–72
    [Google Scholar]
  26. Mantis N. J., Winans S. C. 1993; The chromosomal response regulatory gene chvI of Agrobacterium tumefaciens complements an Escherichia coli phoB mutation and is required for virulence. J Bacteriol 175:6626–6636
    [Google Scholar]
  27. Osteras M., Stanley J., Finan T. M. 1995; Identification of Rhizobium-specific intergenic mosaic elements within an essential two-component regulatory system of Rhizobium species. J Bacteriol 177:5485–5494
    [Google Scholar]
  28. Ozga D. A., Lara J. C., Leigh J. A. 1994; The regulation of exopolysaccharide production is important at two levels of nodule development in Rhizobium meliloti. Mol Plant Microbe Interact 7:758–765
    [Google Scholar]
  29. Pellock B. J., Cheng H. P., Walker G. C. 2000; Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318
    [Google Scholar]
  30. Raivio T. L., Silhavy T. J. 1999; The σE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 2:159–165
    [Google Scholar]
  31. Reed J. W., Glazebrook J., Walker G. C. 1991; The exoR gene of Rhizobium meliloti affects RNA levels of other exo genes but lacks homology to known transcriptional regulators. J Bacteriol 173:3789–3794
    [Google Scholar]
  32. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. van Rhijn P., Vanderleyden J. 1995; The Rhizobium–plant symbiosis. Microbiol Rev 59:124–142
    [Google Scholar]
  34. Wang C., Kemp J., Da Fonseca I. O., Equi R. C., Sheng X., Charles T. C., Sobral B. W. 2010; Sinorhizobium meliloti 1021 loss-of-function deletion mutation in chvI and its phenotypic characteristics. Mol Plant Microbe Interact 23:153–160
    [Google Scholar]
  35. Wells D. H., Chen E. J., Fisher R. F., Long S. R. 2007; ExoR is genetically coupled to the ExoS–ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol 64:647–664
    [Google Scholar]
  36. Wolfe A. J., Parikh N., Lima B. P., Zemaitaitis B. 2008; Signal integration by the two-component signal transduction response regulator CpxR. J Bacteriol 190:2314–2322
    [Google Scholar]
  37. Yao S. Y., Luo L., Har K. J., Becker A., Ruberg S., Yu G. Q., Zhu J. B., Cheng H. P. 2004; Sinorhizobium meliloti ExoR and ExoS proteins regulate both succinoglycan and flagellum production. J Bacteriol 186:6042–6049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038547-0
Loading
/content/journal/micro/10.1099/mic.0.038547-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error