1887

Abstract

is a metabolically flexible micro-organism. It can use sulfate as an electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with a hydrogen-scavenging partner to relieve inhibition by hydrogen. These alternative metabolic types increase the chance of survival for in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome microarrays were used to determine relative transcript levels as shifted its metabolism from syntrophic in a lactate-oxidizing dual-culture with to a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in 2 h after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Upregulation was observed for genes encoding ATPase and the membrane-integrated energy-conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipoproteins and membrane-bound proteins was downregulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologues found only in another syntrophic bacterium, , and four recently sequenced strains. This study also identified several novel -type cytochrome-encoding genes, which may be involved in the sulfidogenic metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038539-0
2010-09-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2746.html?itemId=/content/journal/micro/10.1099/mic.0.038539-0&mimeType=html&fmt=ahah

References

  1. Albert T. J., Norton J., Ott M., Richmond T., Nuwaysir K., Nuwaysir E. F., Stengele K. P., Green R. D.. 2003; Light directed 5′→3′ synthesis of complex oligonucleotide microarrays. Nucleic Acids Res31:e35
    [Google Scholar]
  2. Aubert C., Brugna M., Dolla A., Bruschi M., Giudici-Orticoni M. T.. 2000; A sequential electron transfer from hydrogenases to cytochromes in sulfate-reducing bacteria. Biochim Biophys Acta 1476;85–92
    [Google Scholar]
  3. Bender K. S., Yen H. C., Hemme C. L., Yang Z., He Z., He Q., Zhou J., Huang K. H., Alm E. J.. other authors 2007; Analysis of a ferric uptake regulator ( Fur) mutant of Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol73:5389–5400
    [Google Scholar]
  4. Benjemini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol57:289–300
    [Google Scholar]
  5. Bryant M. P., Wolin E. A., Wolin M. J., Wolfe R. S.. 1967; Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Mikrobiol59:20–31
    [Google Scholar]
  6. Bryant M. P., Campbell L. L., Reddy C. A., Crabill M. R.. 1977; Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol33:1162–1169
    [Google Scholar]
  7. Chhabra S. R., He Q., Huang K. H., Gaucher S. P., Alm E. J., He Z., Hadi M. Z., Hazen T. C., Wall J. D.. other authors 2006; Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough. J Bacteriol188:1817–1828
    [Google Scholar]
  8. Clark M. E., He Q., He Z., Huang K. H., Alm E. J., Wan X. F., Hazen T. C., Arkin A. P., Wall J. D.. other authors 2006; Temporal transcriptomic analysis as Desulfovibrio vulgaris Hildenborough transitions into stationary phase during electron donor depletion. Appl Environ Microbiol72:5578–5588
    [Google Scholar]
  9. Culley D. E., Kovacik W. P. Jr, Brockman F. J., Zhang W.. 2006; Optimization of RNA isolation from the archaebacterium Methanosarcina barkeri and validation for oligonucleotide microarray analysis. J Microbiol Methods67:36–43
    [Google Scholar]
  10. Cypionka H.. 2000; Oxygen respiration in Desulfovibrio species. Annu Rev Microbiol54:827–848
    [Google Scholar]
  11. Dehal P. S., Joachimiak M. P., Price M. N., Bates J. T., Baumohl J. K., Chivian D., Friedland G. D., Huang K. H., Keller K.. other authors 2010; MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res38:D396–D400
    [Google Scholar]
  12. Harmsen H. J., Van Kuijk B. L., Plugge C. M., Akkermans A. D., De Vos W. M., Stams A. J.. 1998; Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol48:1383–1387
    [Google Scholar]
  13. Haveman S. A., Greene E. A., Stilwell C. P., Voordouw J. K., Voordouw G.. 2004; Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol186:7944–7950
    [Google Scholar]
  14. He Q., Huang K. H., He Z., Alm E. J., Fields M. W., Hazen T. C., Arkin A. P., Wall J. D., Zhou J.. 2006; Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough inferred from global transcriptional analysis. Appl Environ Microbiol72:4370–4381
    [Google Scholar]
  15. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B.. other authors 2004; The genome sequence of the anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol22:554–559
    [Google Scholar]
  16. Holmer M., Kristensen E.. 1994; Co-existence of sulfate reduction and methane production in an organic-rich sediment. Mar Ecol Prog Ser107:177–184
    [Google Scholar]
  17. Kammler M., Schön C., Hantke K.. 1993; Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol175:6212–6219
    [Google Scholar]
  18. Kuivila K.M., Murray J. W., Devol A. H.. 1990; Methane production in the sulfate depleted sediments of two marine basins. Geochim Cosmochim Acta54:403–411
    [Google Scholar]
  19. Leloup J., Fossing H., Kohls K., Holmkvist L., Jørgensen B. B.. 2009; Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol11:1278–1291
    [Google Scholar]
  20. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408
    [Google Scholar]
  21. McInerney M. J., Mackie R. I., Bryant M. P.. 1981; Syntrophic association of a butyrate-degrading bacterium and Methanosarcina enriched from bovine rumen fluid. Appl Environ Microbiol41:826–828
    [Google Scholar]
  22. Meuer J., Bartoschek S., Koch J., Künkel A., Hedderich R.. 1999; Purification and catalytic properties of Ech hydrogenase from Methanosarcina barkeri. Eur J Biochem265:325–335
    [Google Scholar]
  23. Meuer J., Kuettner H. C., Zhang J. K., Hedderich R., Metcalf W. W.. 2002; Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A99:5632–5637
    [Google Scholar]
  24. Mukhopadhyay A., He Z., Alm E. J., Arkin A. P., Baidoo E. E., Borglin S. C., Chen W., Hazen T. C., He Q.. other authors 2006; Salt stress in Desulfovibrio vulgaris Hildenborough: an integrated genomics approach. J Bacteriol188:4068–4078
    [Google Scholar]
  25. Mukhopadhyay A., Redding A. M., Joachimiak M. P., Arkin A. P., Borglin S. E., Dehal P. S., Chakraborty R., Geller J. T., Hazen T. C.. other authors 2007; Cell-wide responses to low-oxygen exposure in Desulfovibrio vulgaris Hildenborough. J Bacteriol189:5996–6010
    [Google Scholar]
  26. Muyzer G., Stams A. J. M.. 2008; The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol6:441–454
    [Google Scholar]
  27. Neretin L. N., Schippers A., Pernthaler A., Hamann K., Amann R., Jørgensen B. B.. 2003; Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ Microbiol5:660–671
    [Google Scholar]
  28. Nuwaysir E. F., Huang W., Albert T. J., Singh J., Nuwaysir K., Pitas A., Richmond T., Gorski T., Berg J. P.. other authors 2002; Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res12:1749–1755
    [Google Scholar]
  29. Odom J. M., Peck H. D. Jr. 1981; Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria Desulfovibrio sp. FEMS Microbiol Lett12:47–50
    [Google Scholar]
  30. Oremland R. S., Polcin S.. 1982; Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol44:1270–1276
    [Google Scholar]
  31. Peck H. D. Jr. 1966; Phosphorylation coupled with electron transfer in extracts of the sulfate reducing bacterium Desulfovibrio gigas. Biochem Biophys Res Commun22:112–118
    [Google Scholar]
  32. Pereira P. M., He Q., Valente F. M. A., Xavier A. V., Zhou J., Pereira I. A. C., Louro R. O.. 2008; Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie van Leeuwenhoek93:347–362
    [Google Scholar]
  33. Rodionov D. A., Dubchak I., Arkin A., Alm E., Gelfand M. S.. 2004; Reconstruction of regulatory and metabolic pathways in metal-reducing delta-proteobacteria. Genome Biol5:R90
    [Google Scholar]
  34. Rodrigues R., Valente F. M., Pereira I. A., Oliveira S., Rodrigues-Pousada C.. 2003; A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun306:366–375
    [Google Scholar]
  35. Schink B.. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev61:262–280
    [Google Scholar]
  36. Schink B.. 2002; Synergistic interactions in the microbial world. Antonie van Leeuwenhoek81:257–261
    [Google Scholar]
  37. Scholten J. C., Conrad R.. 2000; Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol66:2934–2942
    [Google Scholar]
  38. Scholten J. C., Culley D. E., Brockman F. J., Wu G., Zhang W.. 2007a; Evolution of the syntrophic interaction between Desulfovibrio vulgaris and Methanosarcina barkeri: Involvement of an ancient horizontal gene transfer. Biochem Biophys Res Commun352:48–54
    [Google Scholar]
  39. Scholten J. C., Culley D. E., Nie L., Munn K. J., Chow L., Brockman F. J., Zhang W.. 2007b; Development and assessment of whole-genome oligonucleotide microarrays to analyze an anaerobic microbial community and its responses to oxidative stress. Biochem Biophys Res Commun358:571–577
    [Google Scholar]
  40. Simon R. M., Korn E. L., McShane L. M., Radmacher M. D., Wright G. E., Zhao Y.. 2003; Design and Analysis of DNA Microarray Investigations New York: Springer;
    [Google Scholar]
  41. Stams A. J. M.. 1994; Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek66:271–294
    [Google Scholar]
  42. Stams A. J. M., Plugge C. M.. 2009; Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol7:568–577
    [Google Scholar]
  43. Tang Y., Pingitore F., Mukhopadhyay A., Phan R., Hazen T. C., Keasling J. D.. 2007; Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry. J Bacteriol189:940–949
    [Google Scholar]
  44. Vignais P. M., Billoud B., Meyer J.. 2001; Classification and phylogeny of hydrogenases. FEMS Microbiol Rev25:455–501
    [Google Scholar]
  45. Voordouw G.. 1995; The genus Desulfovibrio: the centennial. Appl Environ Microbiol61:2813–2819
    [Google Scholar]
  46. Walker C. B., He Z., Yang Z. K., Ringbauer J. A. Jr, He Q., Zhou J., Voordouw G., Wall J. D., Arkin A. P.. other authors 2009; The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J Bacteriol191:5793–5801
    [Google Scholar]
  47. Widdel F., Hansen T. A.. 1991; The dissimilatory sulphate and sulphur-reducing bacteria. In The Prokaryotes, 2nd edn.vol. I pp583–624 Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleiter K. H.. New York: Springer;
    [Google Scholar]
  48. Winfrey M. R., Ward D. M.. 1983; Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol45:193–199
    [Google Scholar]
  49. Zhang W., Culley D. E., Scholten J. C., Hogan M., Vitiritti L., Brockman F. J.. 2006a; Global transcriptomic analysis of Desulfovibrio vulgaris on different electron donors. Antonie van Leeuwenhoek89:221–237
    [Google Scholar]
  50. Zhang W., Culley D. E., Hogan M., Vitiritti L., Brockman F. J.. 2006b; Oxidative stress and heat-shock responses in Desulfovibrio vulgaris by genome-wide transcriptomic analysis. Antonie van Leeuwenhoek90:41–55
    [Google Scholar]
  51. Zhang W., Gritsenko M. A., Moore R. J., Culley D. E., Nie L., Petritis K., Strittmatter E., Camp D. G. II, Smith R. D., Brockman F. J.. 2006c; A proteomic view of Desulfovibrio vulgaris metabolism as determined by liquid chromatography coupled with tandem mass spectrometry. Proteomics6:4286–4299
    [Google Scholar]
  52. Zhang W., Culley D. E., Nie L., Brockman F. J.. 2006d; DNA microarray analysis of anaerobic Methanosarcina barkeri reveals responses to heat shock and air exposure. J Ind Microbiol Biotechnol33:784–790
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038539-0
Loading
/content/journal/micro/10.1099/mic.0.038539-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error