1887

Abstract

Upon nutrient starvation, the Gram-positive bacterium switches from growth to sporulation by activating a multicomponent phosphorelay consisting of a major sensor histidine kinase (KinA), two phosphotransferases (Spo0F and Spo0B) and a response regulator (Spo0A). Although the primary sporulation signal(s) produced under starvation conditions is not known, it is believed that the reception of a signal(s) on the sensor kinase results in the activation of autophosphorylation of the enzyme. The phosphorylated kinase transfers the phosphate group to Spo0A via the phosphorelay and thus triggers sporulation. With a combination of quantitative immunoblot analysis, microscopy imaging and computational analysis, here we found that each of the phosphorelay components tested increased gradually over the period of sporulation, and that Spo0F was expressed in a more heterogeneous pattern than KinA and Spo0B in a sporulating cell population. We determined molecule numbers and concentrations of each phosphorelay component under physiological sporulation conditions at the single-cell level. Based on these results, we suggest that successful entry into the sporulation state is manifested by a certain critical level of each phosphorelay component, and thus that only a subpopulation achieves a sufficient intracellular quorum of the phosphorelay components to activate Spo0A and proceed successfully to the entry into sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038497-0
2010-08-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2294.html?itemId=/content/journal/micro/10.1099/mic.0.038497-0&mimeType=html&fmt=ahah

References

  1. Antoniewski, C., Savelli, B. & Stragier, P. ( 1990; ). The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J Bacteriol 172, 86–93.
    [Google Scholar]
  2. Asai, K., Kawamura, F., Yoshikawa, H. & Takahashi, H. ( 1995; ). Expression of kinA and accumulation of σ H at the onset of sporulation in Bacillus subtilis. J Bacteriol 177, 6679–6683.
    [Google Scholar]
  3. Asayama, M., Yamamoto, A. & Kobayashi, Y. ( 1995; ). Dimer form of phosphorylated Spo0A, a transcriptional regulator, stimulates the spo0F transcription at the initiation of sporulation in Bacillus subtilis. J Mol Biol 250, 11–23.[CrossRef]
    [Google Scholar]
  4. Asayama, M., Saito, K. & Kobayashi, Y. ( 1998; ). Translational attenuation of the Bacillus subtilis spo0B cistron by an RNA structure encompassing the initiation region. Nucleic Acids Res 26, 824–830.[CrossRef]
    [Google Scholar]
  5. Bai, U., Lewandoski, M., Dubnau, E. & Smith, I. ( 1990; ). Temporal regulation of the Bacillus subtilis early sporulation gene spo0F. J Bacteriol 172, 5432–5439.
    [Google Scholar]
  6. Bouvier, J., Stragier, P., Bonamy, C. & Szulmajster, J. ( 1984; ). Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc Natl Acad Sci U S A 81, 7012–7016.[CrossRef]
    [Google Scholar]
  7. Burbulys, D., Trach, K. A. & Hoch, J. A. ( 1991; ). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545–552.[CrossRef]
    [Google Scholar]
  8. Chibazakura, T., Kawamura, F., Asai, K. & Takahashi, H. ( 1995; ). Effects of spo0 mutations on spo0A promoter switching at the initiation of sporulation in Bacillus subtilis. J Bacteriol 177, 4520–4523.
    [Google Scholar]
  9. Chung, J. D., Stephanopoulos, G., Ireton, K. & Grossman, A. D. ( 1994; ). Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol 176, 1977–1984.
    [Google Scholar]
  10. de Jong, I. G., Veening, J. W. & Kuipers, O. P. ( 2010; ). Heterochronic phosphorelay gene expression as a source of heterogeneity in Bacillus subtilis spore formation. J Bacteriol 192, 2053–2067.[CrossRef]
    [Google Scholar]
  11. Dubnau, D. & Losick, R. ( 2006; ). Bistability in bacteria. Mol Microbiol 61, 564–572.[CrossRef]
    [Google Scholar]
  12. Eswaramoorthy, P., Guo, T. & Fujita, M. ( 2009; ). In vivo domain-based functional analysis of the major sporulation sensor kinase, KinA, in Bacillus subtilis. J Bacteriol 191, 5358–5368.[CrossRef]
    [Google Scholar]
  13. Ferrari, F. A., Trach, K. & Hoch, J. A. ( 1985; ). Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. J Bacteriol 161, 556–562.
    [Google Scholar]
  14. Fujita, M. ( 2000; ). Temporal and selective association of multiple sigma factors with RNA polymerase during sporulation in Bacillus subtilis. Genes Cells 5, 79–88.[CrossRef]
    [Google Scholar]
  15. Fujita, M. & Losick, R. ( 2002; ). An investigation into the compartmentalization of the sporulation transcription factor σ E in Bacillus subtilis. Mol Microbiol 43, 27–38.[CrossRef]
    [Google Scholar]
  16. Fujita, M. & Losick, R. ( 2005; ). Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev 19, 2236–2244.[CrossRef]
    [Google Scholar]
  17. Fujita, M. & Sadaie, Y. ( 1998; ). Feedback loops involving Spo0A and AbrB in in vitro transcription of the genes involved in the initiation of sporulation in Bacillus subtilis. J Biochem 124, 98–104.[CrossRef]
    [Google Scholar]
  18. Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. ( 2005; ). High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187, 1357–1368.[CrossRef]
    [Google Scholar]
  19. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. ( 2003; ). Cannibalism by sporulating bacteria. Science 301, 510–513.[CrossRef]
    [Google Scholar]
  20. Gregory, J. A., Becker, E. C. & Pogliano, K. ( 2008; ). Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev 22, 3475–3488.[CrossRef]
    [Google Scholar]
  21. Grossman, A. D. ( 1995; ). Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29, 477–508.[CrossRef]
    [Google Scholar]
  22. Hoch, J. A. ( 1993; ). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol 47, 441–465.[CrossRef]
    [Google Scholar]
  23. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. ( 2005; ). Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6, 451–464.[CrossRef]
    [Google Scholar]
  24. Kearns, D. B. & Losick, R. ( 2005; ). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19, 3083–3094.[CrossRef]
    [Google Scholar]
  25. Kubitschek, H. E. & Friske, J. A. ( 1986; ). Determination of bacterial cell volume with the Coulter Counter. J Bacteriol 168, 1466–1467.
    [Google Scholar]
  26. Maamar, H. & Dubnau, D. ( 2005; ). Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56, 615–624.[CrossRef]
    [Google Scholar]
  27. Perego, M. & Hoch, J. A. ( 2002; ). Two-component systems, phosphorelays, and regulation of their activities by phosphatases. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 473–482. Edited by A. L. Sonneshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology
  28. Pessi, G., Blumer, C. & Haas, D. ( 2001; ). lacZ fusions report gene expression, don't they? Microbiology 147, 1993–1995.
    [Google Scholar]
  29. Piggot, P. J. & Losick, R. ( 2002; ). Sporulation genes and intercompartmental regulation. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 483–518. Edited by A. L. Sonneshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  30. Predich, M., Nair, G. & Smith, I. ( 1992; ). Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing σ H. J Bacteriol 174, 2771–2778.
    [Google Scholar]
  31. Rudner, D. Z. & Losick, R. ( 2002; ). A sporulation membrane protein tethers the pro-σ K processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev 16, 1007–1018.[CrossRef]
    [Google Scholar]
  32. Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. ( 1998; ). Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol 180, 547–555.
    [Google Scholar]
  33. Sonenshein, A. L. ( 2000; ). Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol 3, 561–566.[CrossRef]
    [Google Scholar]
  34. Stephenson, K. & Hoch, J. A. ( 2002; ). Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 46, 297–304.[CrossRef]
    [Google Scholar]
  35. Sterlini, J. M. & Mandelstam, J. ( 1969; ). Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J 113, 29–37.
    [Google Scholar]
  36. Strauch, M. A., Trach, K. A., Day, J. & Hoch, J. A. ( 1992; ). Spo0A activates and represses its own synthesis by binding at its dual promoters. Biochimie 74, 619–626.[CrossRef]
    [Google Scholar]
  37. Strauch, M. A., Wu, J. J., Jonas, R. H. & Hoch, J. A. ( 1993; ). A positive feedback loop controls transcription of the spo0F gene, a component of the sporulation phosphorelay in Bacillus subtilis. Mol Microbiol 7, 967–974.[CrossRef]
    [Google Scholar]
  38. Trach, K. & Hoch, J. A. ( 1989; ). The Bacillus subtilis spo0B stage 0 sporulation operon encodes an essential GTP-binding protein. J Bacteriol 171, 1362–1371.
    [Google Scholar]
  39. Veening, J. W., Hamoen, L. W. & Kuipers, O. P. ( 2005; ). Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 56, 1481–1494.[CrossRef]
    [Google Scholar]
  40. Veening, J. W., Igoshin, O. A., Eijlander, R. T., Nijland, R., Hamoen, L. W. & Kuipers, O. P. ( 2008a; ). Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4, 184
    [Google Scholar]
  41. Veening, J. W., Smits, W. K. & Kuipers, O. P. ( 2008b; ). Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62, 193–210.[CrossRef]
    [Google Scholar]
  42. Veening, J. W., Stewart, E. J., Berngruber, T. W., Taddei, F., Kuipers, O. P. & Hamoen, L. W. ( 2008c; ). Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci U S A 105, 4393–4398.[CrossRef]
    [Google Scholar]
  43. Vellanoweth, R. L. & Rabinowitz, J. C. ( 1992; ). The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol 6, 1105–1114.[CrossRef]
    [Google Scholar]
  44. Wach, A. ( 1996; ). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12, 259–265.[CrossRef]
    [Google Scholar]
  45. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. ( 1991; ). Regulation of spo0H, a gene coding for the Bacillus subtilis σ H factor. J Bacteriol 173, 521–529.
    [Google Scholar]
  46. Youngman, P., Perkins, J. B. & Losick, R. ( 1984; ). Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12, 1–9.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038497-0
Loading
/content/journal/micro/10.1099/mic.0.038497-0
Loading

Data & Media loading...

Supplements

[PDF](96 KB)

PDF

[PDF](40 KB)

PDF

[PDF](127 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error