1887

Abstract

Recombinant VimA protein can interact with the gingipains and several other proteins that may play a role in its biogenesis in . analysis of PG2096, a hypothetical protein that was shown to interact with VimA, suggests that it may have environmental stress resistance properties. To further evaluate the role(s) of PG2096, the predicted open reading frame was PCR amplified from W83 and insertionally inactivated using the antibiotic-resistance cassette. One randomly chosen -defective mutant created by allelic exchange and designated FLL205 was further characterized. Under normal growth conditions at 37 °C, Arg-X and Lys-X gingipain activities in FLL205 were reduced by approximately 35 % and 21 %, respectively, compared to the wild-type strain. However, during prolonged growth at an elevated temperature of 42 °C, Arg-X activity was increased by more than 40 % in FLL205 in comparison to the wild-type strain. In addition, the -defective mutant was more resistant to oxidative stress when treated with 0.25 mM hydrogen peroxide. Taken together these results suggest that the gene, designated (gulator of ingipain activity at elevated emperatures), may be involved in regulating gingipain activity at elevated temperatures and be important in oxidative stress resistance in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038315-0
2010-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3065.html?itemId=/content/journal/micro/10.1099/mic.0.038315-0&mimeType=html&fmt=ahah

References

  1. Abaibou H., Chen Z., Olango G. J., Liu Y., Edwards J., Fletcher H. M. 2001; vimA gene downstream of recA is involved in virulence modulation in Porphyromonas gingivalis W83. Infect Immun 69:325–335
    [Google Scholar]
  2. Amano A. 2003; Molecular interaction of Porphyromonas gingivalis with host cells: implication for the microbial pathogenesis of periodontal disease. J Periodontol 74:90–96
    [Google Scholar]
  3. Amano A., Sharma A., Sojar H. T., Kuramitsu H. K., Genco R. J. 1994; Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun 62:4682–4685
    [Google Scholar]
  4. Amano A., Premaraj T., Kuboniwa M., Nakagawa I., Shizukuishi S., Morisaki I., Hamada S. 2001; Altered antigenicity in periodontitis patients and decreased adhesion of Porphyromonas gingivalis by environmental temperature stress. Oral Microbiol Immunol 16:124–128
    [Google Scholar]
  5. Aravind L., Koonin E. V. 1999; Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. J Mol Biol 287:1023–1040
    [Google Scholar]
  6. Baev D., England R., Kuramitsu H. K. 1999; Stress-induced membrane association of the Streptococcus mutans GTP-binding protein, an essential G protein, and investigation of its physiological role by utilizing an antisense RNA strategy. Infect Immun 67:4510–4516
    [Google Scholar]
  7. Baev D., Ohk S. H., Kuramitsu H. K. 2000; Protein interactions of SGP, an essential Streptococcus mutans GTPase, revealed by biochemical and yeast two-hybrid system analyses. FEMS Microbiol Lett 184:149–153
    [Google Scholar]
  8. Bronner S., Monteil H., Prevost G. 2004; Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–200
    [Google Scholar]
  9. Burland T. G. 2000; DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132:71–91
    [Google Scholar]
  10. Chapple I. L. 1997; Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 24:287–296
    [Google Scholar]
  11. Curtis M. A., Slaney J. M., Duse-Opoku J. 2005; Critical pathways in microbial virulence. J Clin Periodontol 32:Suppl. 628–38
    [Google Scholar]
  12. Dorman C. J. 2009; Global regulators and environmental adaptation in Gram-negative pathogens. Clin Microbiol Infect 15:Suppl. 147–50
    [Google Scholar]
  13. Fedi P. F. Jr, Killoy W. J. 1992; Temperature differences at periodontal sites in health and disease. J Periodontol 63:24–27
    [Google Scholar]
  14. Fitzpatrick R. E., Wijeyewickrema L. C., Pike R. N. 2009; The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 4:471–487
    [Google Scholar]
  15. Fletcher H. M., Schenkein H. A., Morgan R. M., Bailey K. A., Berry C. R., Macrina F. L. 1995; Virulence of a mutant of Porphyromonas gingivalis W83 defective in the prtH gene. Infect Immun 63:1521–1528
    [Google Scholar]
  16. Forng R. Y., Champagne C., Simpson W., Genco C. A. 2000; Environmental cues and gene expression in Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. Oral Dis 6:351–365
    [Google Scholar]
  17. Geer L. Y., Domrachev M., Lipman D. J., Bryant S. H. 2002; CDART: protein homology by domain architecture. Genome Res 12:1619–1623
    [Google Scholar]
  18. Hasegawa Y., Nishiyama S., Nishikawa K., Kadowaki T., Yamamoto K., Noguchi T., Yoshimura F. 2003; A novel type of two-component regulatory system affecting gingipains in Porphyromonas gingivalis. Microbiol Immunol 47:849–858
    [Google Scholar]
  19. Ishiguro I., Saiki K., Konishi K. 2009; PG27 is a novel membrane protein essential for a Porphyromonas gingivalis protease secretion system. FEMS Microbiol Lett 292:261–267
    [Google Scholar]
  20. Jiang M., Sullivan S. M., Wout P. K., Maddock J. R. 2007; G-protein control of the ribosome-associated stress response protein SpoT. J Bacteriol 189:6140–6147
    [Google Scholar]
  21. Johnson N. A., McKenzie R., McLean L., Sowers L. C., Fletcher H. M. 2004; 8-Oxo-7,8-dihydroguanine is removed by a nucleotide excision repair-like mechanism in Porphyromonas gingivalis W83. J Bacteriol 186:7697–7703
    [Google Scholar]
  22. Katsuragi H., Ohtake M., Kurasawa I., Saito K. 2003; Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative stress on PMNs during phagocytosis of periodontopathic bacteria. Odontology 91:13–18
    [Google Scholar]
  23. Kedzierska S., Staniszewska M., Wegrzyn A., Taylor A. 1999; The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregated by heat-shock from Escherichia coli cells. FEBS Lett 446:331–337
    [Google Scholar]
  24. Kesavalu L., Holt S. C., Ebersole J. L. 2003; In vitro environmental regulation of Porphyromonas gingivalis growth and virulence. Oral Microbiol Immunol 18:226–233
    [Google Scholar]
  25. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263
    [Google Scholar]
  26. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948
    [Google Scholar]
  27. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218
    [Google Scholar]
  28. Mauriello E. M., Mouhamar F., Nan B., Ducret A., Dai D., Zusman D. R., Mignot T. 2010; Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J 29:315–326
    [Google Scholar]
  29. Mikolajczyk J., Boatright K. M., Stennicke H. R., Nazif T., Potempa J., Bogyo M., Salvesen G. S. 2003; Sequential autolytic processing activates the zymogen of Arg-gingipain. J Biol Chem 278:10458–10464
    [Google Scholar]
  30. Murakami Y., Masuda T., Imai M., Iwami J., Nakamura H., Noguchi T., Yoshimura F. 2004; Analysis of major virulence factors in Porphyromonas gingivalis under various culture temperatures using specific antibodies. Microbiol Immunol 48:561–569
    [Google Scholar]
  31. Nakayama K. 2003; Molecular genetics of Porphyromonas gingivalis: gingipains and other virulence factors. Curr Protein Pept Sci 4:389–395
    [Google Scholar]
  32. Olango G. J., Roy F., Sheets S. M., Young M. K., Fletcher H. M. 2003; Gingipain RgpB is excreted as a proenzyme in the vimA-defective mutant Porphyromonas gingivalis FLL92. Infect Immun 71:3740–3747
    [Google Scholar]
  33. Olarewaju O., Ortiz P. A., Chowdhury W. Q., Chatterjee I., Kinzy T. G. 2004; The translation elongation factor eEF1B plays a role in the oxidative stress response pathway. RNA Biol 1:89–94
    [Google Scholar]
  34. Percival R. S., Marsh P. D., Devine D. A., Rangarajan M., Duse-Opoku J., Shepherd P., Curtis M. A. 1999; Effect of temperature on growth, hemagglutination, and protease activity of Porphyromonas gingivalis. Infect Immun 67:1917–1921
    [Google Scholar]
  35. Potempa J., Mikolajczyk-Pawlinska J., Brassell D., Nelson D., Thøgersen I. B., Enghild J. J., Travis J. 1998; Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis. J Biol Chem 273:21648–21657
    [Google Scholar]
  36. Potempa J., Sroka A., Imamura T., Travis J. 2003; Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci 4:397–407
    [Google Scholar]
  37. Roy F., Vanterpool E., Fletcher H. M. 2006; HtrA in Porphyromonas gingivalis can regulate growth and gingipain activity under stressful environmental conditions. Microbiology 152:3391–3398
    [Google Scholar]
  38. Saiki K., Konishi K. 2010; The role of Sov protein in the secretion of gingipain protease virulence factors of Porphyromonas gingivalis. FEMS Microbiol Lett 302:166–174
    [Google Scholar]
  39. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Sayed A., Matsuyama S., Inouye M. 1999; Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun 264:51–54
    [Google Scholar]
  41. Scott J. M., Haldenwang W. G. 1999; Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor sigma(B. J Bacteriol 181:4653–4660
    [Google Scholar]
  42. Sculley D. V., Langley-Evans S. C. 2002; Salivary antioxidants and periodontal disease status. Proc Nutr Soc 61:137–143
    [Google Scholar]
  43. Seymour G. J., Ford P. J., Cullinan M. P., Leishman S., Yamazaki K. 2007; Relationship between periodontal infections and systemic disease. Clin Microbiol Infect 13 (Suppl. 4):3–10
    [Google Scholar]
  44. Sheets S. M., Potempa J., Travis J., Fletcher H. M., Casiano C. A. 2006; Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis. Infect Immun 74:5667–5678
    [Google Scholar]
  45. Vanterpool E., Roy F., Fletcher H. M. 2004; The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83. Infect Immun 72:5555–5564
    [Google Scholar]
  46. Vanterpool E., Roy F., Fletcher H. M. 2005; Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83. Infect Immun 73:3971–3982
    [Google Scholar]
  47. Vanterpool E., Roy F., Zhan W., Sheets S. M., Sangberg L., Fletcher H. M. 2006; VimA is part of the maturation pathway for the major gingipains of Porphyromonas gingivalis W83. Microbiology 152:3383–3389
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038315-0
Loading
/content/journal/micro/10.1099/mic.0.038315-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error