1887

Abstract

The unicellular diazotrophic cyanobacterium sp. ATCC 51142 ( 51142) is able to grow aerobically under nitrogen-fixing conditions with alternating light–dark cycles or continuous illumination. This study investigated the effects of carbon and nitrogen sources on 51142 metabolism via C-assisted metabolite analysis and biochemical measurements. Under continuous light (50 μmol photons m s) and nitrogen-fixing conditions, we found that glycerol addition promoted aerobic biomass growth (by twofold) and nitrogenase-dependent hydrogen production [up to 25 μmol H (mg chlorophyll) h], but strongly reduced phototrophic CO utilization. Under nitrogen-sufficient conditions, 51142 was able to metabolize glycerol photoheterotrophically, and the activity of light-dependent reactions (e.g. oxygen evolution) was not significantly reduced. In contrast, sp. PCC 6803 showed apparent mixotrophic metabolism under similar growth conditions. Isotopomer analysis also detected that 51142 was able to fix CO via anaplerotic pathways, and to take up glucose and pyruvate for mixotrophic biomass synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038232-0
2010-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2566.html?itemId=/content/journal/micro/10.1099/mic.0.038232-0&mimeType=html&fmt=ahah

References

  1. Anderson S. L., McIntosh L. 1991; Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: a blue-light-requiring process. J Bacteriol 173:2761–2767
    [Google Scholar]
  2. Atsumi S., Higashide W., Liao J. C. 2009; Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27:1177–1180
    [Google Scholar]
  3. Benemann J. R., Weare N. M. 1974; Hydrogen evolution by nitrogen-fixing Anabaena cylindrica cultures. Science 184:174–175
    [Google Scholar]
  4. Berman-Frank I., Lundgren P., Chen Y.-B., Küpper H., Kolber Z., Bergman B., Falkowski P. 2001; Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537
    [Google Scholar]
  5. Berman-Frank I., Lundgren P., Falkowski P. 2003; Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164
    [Google Scholar]
  6. Bernat G., Waschewski N., Rogner M. 2009; Towards efficient hydrogen production: the impact of antenna size and external factors on electron transport dynamics in Synechocystis PCC 6803. Photosynth Res 99:205–216
    [Google Scholar]
  7. Bottomley P. J., Van Baalen C. 1978; Characteristics of heterotrophic growth in the blue-green alga Nostoc sp. strain Mac. J Gen Microbiol 107:309–318
    [Google Scholar]
  8. Colon-Lopez M. S., Sherman D. M., Sherman L. A. 1997; Transcriptional and translational regulation of nitrogenase in light-dark- and continuous-light grown cultures of the unicellular cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol 179:4319–4327
    [Google Scholar]
  9. Dai G., Deblois C. P., Liu S., Juneau P., Qiu B. 2008; Differential sensitivity of five cyanobacterial strains to ammonium toxicity and its inhibitory mechanism on the photosynthesis of rice-field cyanobacterium Ge-Xian-Mi (Nostoc. Aquat Toxicol 89:113–121
    [Google Scholar]
  10. Drath M., Kloft N., Batschauer A., Marin K., Novak J., Forchhammer K. 2008; Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 147:206–215
    [Google Scholar]
  11. Dutta D., De D., Chaudhuri S., Bhattacharya S. K. 2005; Hydrogen production by Cyanobacteria. Microb Cell Fact 4:36
    [Google Scholar]
  12. Eiler A. 2006; Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437
    [Google Scholar]
  13. Elvitigala T., Stöckel J., Ghosh B. K., Pakrasi H. B. 2009; Effect of continuous light on diurnal rhythms in Cyanothece sp. ATCC 51142. BMC Genomics 10:226
    [Google Scholar]
  14. Fay P. 1992; Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373
    [Google Scholar]
  15. Flores E., Schmetterer G. 1986; Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 166:693–696
    [Google Scholar]
  16. Fong S. S., Nanchen A., Palsson B. O., Sauer U. 2006; Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 281:8024–8033
    [Google Scholar]
  17. Galmozzi C. V., Fernandez-Avila M. J., Reyes J. C., Florencio F. J., Muro-Pastor M. I. 2007; The ammonium-inactivated cyanobacterial glutamine synthetase I is reactivated in vivo by a mechanism involving proteolytic removal of its inactivating factors. Mol Microbiol 65:166–179
    [Google Scholar]
  18. Huang T.-C., Chow T.-J. 1986; New type of N2-fixing unicellular cyanobacterium (blue-green alga. FEMS Microbiol Lett 36:109–110
    [Google Scholar]
  19. Kaftan D., Meszaros T., Whitmarsh J., Nedbal L. 1999; Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga Scenedesmus quadricauda. Plant Physiol 120:433–441
    [Google Scholar]
  20. Krause G. H., Weis E. 1991; Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349
    [Google Scholar]
  21. Madamwar D., Garg N., Shah V. 2000; Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16:757–767
    [Google Scholar]
  22. Muro-Pastor M. I., Reyes J. C., Florencio F. J. 2005; Ammonium assimilation in cyanobacteria. Photosynth Res 83:135–150
    [Google Scholar]
  23. Nyström T. 2004; Stationary phase physiology. Annu Rev Microbiol 58:161–181
    [Google Scholar]
  24. Pingitore F., Tang Y. J., Kruppa G. H., Keasling J. D. 2007; Analysis of amino acid isotopomers using FT-ICR MS. Anal Chem 79:2483–2490
    [Google Scholar]
  25. Pirintsos S. A., Munzi S., Loppi S., Kotzabasis K. 2009; Do polyamines alter the sensitivity of lichens to nitrogen stress?. Ecotoxicol Environ Saf 72:1331–1336
    [Google Scholar]
  26. Postgate J. 1998 Nitrogen Fixation, 3rd edn. Cambridge UK: Cambridge University Press;
  27. Rawson D. M. 1985; The effects of exogenous amino acids on growth and nitrogenase activity in the cyanobacterium Anabaena cylindrica PCC 7122. J Gen Microbiol 131:2549–2554
    [Google Scholar]
  28. Reddy K. J., Haskell J. B., Sherman D. M., Sherman L. A. 1993; Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J Bacteriol 175:1284–1292
    [Google Scholar]
  29. Rey F. E., Heiniger E. K., Harwood C. S. 2007; Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671
    [Google Scholar]
  30. Roose J. L., Pakrasi H. B. 2004; Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J Biol Chem 279:45417–45422
    [Google Scholar]
  31. Schmetterer G. R. 1990; Sequence conservation among the glucose transporter from the cyanobacterium Synechocystis sp. PCC 6803 and mammalian glucose transporters. Plant Mol Biol 14:697–706
    [Google Scholar]
  32. Schreiber U., Endo T., Mi H., Asada K. 1995; Quenching analysis of chlorophyll fluorescence by the saturation pulse method: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882
    [Google Scholar]
  33. Slack C. R., Hatch M. D. 1967; Comparative studies on the activity of carboxylases and other enzymes in relation to the new pathway of photosynthetic carbon dioxide fixation in tropical grasses. Biochem J 103:660–665
    [Google Scholar]
  34. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev 35:171–205
    [Google Scholar]
  35. Stöckel J., Welsh E. A., Liberton M., Kunnvakkam R., Aurora R., Pakrasi H. B. 2008; Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci U S A 105:6156–6161
    [Google Scholar]
  36. Tamagnini P., Leitao E., Oliveira P., Ferreira D., Pinto F., Harris D. J., Heidorn T., Lindblad P. 2007; Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31:692–720
    [Google Scholar]
  37. Tang Y. J., Hwang J. S., Wemmer D., Keasling J. D. 2007a; The Shewanella oneidensis MR-1 fluxome under various oxygen conditions. Appl Environ Microbiol 73:718–729
    [Google Scholar]
  38. Tang Y. J., Meadows A. L., Kirby J., Keasling J. D. 2007b; Anaerobic central metabolic pathways in Shewanella oneidensis MR-1 reinterpreted in the light of isotopic metabolite labeling. J Bacteriol 189:894–901
    [Google Scholar]
  39. Tang Y. J., Pingitore F., Mukhopadhyay A., Phan R., Hazen T. C., Keasling J. D. 2007c; Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using GC-MS and FT-ICR mass spectrometry. J Bacteriol 189:940–949
    [Google Scholar]
  40. Tang Y. J., Martin H. G., Myers S., Rodriguez S., Baidoo E. E. K., Keasling J. D. 2009; Advances in metabolic network and flux analysis of microorganisms via 13C isotopic labeling. Mass Spectrom Rev 28:362–375
    [Google Scholar]
  41. Ting C. S., Owens T. G. 1992; Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiol 100:367–373
    [Google Scholar]
  42. Toepel J., Welsh E., Summerfield T. C., Pakrasi H. B., Sherman L. A. 2008; Differential transcriptional analysis of the cyanobacterium Cyanothece sp. strain ATCC 51142 during light-dark and continuous-light growth. J Bacteriol 190:3904–3913
    [Google Scholar]
  43. Tuli R., Naithani S., Misra H. S. 1996; Cyanobacterial photosynthesis and the problem of oxygen in nitrogen-fixation: a molecular genetic view. J Sci Ind Res (India 55:638–657
    [Google Scholar]
  44. Van Baalen C., Hoare D. S., Brandt E. 1971; Heterotrophic growth of blue-green algae in dim light. J Bacteriol 105:685–689
    [Google Scholar]
  45. Wahl S. A., Dauner M., Wiechert W. 2004; New tools for mass isotopomer data evaluation in 13C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85:259–268
    [Google Scholar]
  46. Welsh E. A., Liberton M., Stöckel J., Loh T., Elvitigala T., Wang C., Wollam A., Fulton R. S., Clifton S. W. other authors 2008; The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci U S A 105:15094–15099
    [Google Scholar]
  47. Wu B., Zhang B., Feng X., Rubens J. R., Huang R., Hicks L. M., Pakrasi H. B., Tang Y. J. 2010; Alternative isoleucine synthesis pathway in cyanobacterial species. Microbiology 156:596–602
    [Google Scholar]
  48. Yang C., Hua Q., Shimizu K. 2002; Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202–216
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038232-0
Loading
/content/journal/micro/10.1099/mic.0.038232-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error