1887

Abstract

The emergence of multi-drug-resistant strains of emphasizes the need to develop new antibiotics. The unique and essential role of the peptide deformylase (PDF) in catalysing the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria makes it an attractive antibacterial drug target. In the present study, both deformylase homologues from (SePDF-1 and SePDF-2) were cloned and expressed, and their enzymic activities were characterized. Co-substituted SePDF-1 exhibited much higher enzymic activity ( / 6.3×10 M s) than those of Ni- and Zn-substituted SePDF-1, and SePDF-1 showed much weaker binding ability towards Ni than towards Co and Zn, which is different from PDF in (SaPDF), although they share 80 % amino-acid sequence identity. The determined crystal structure of SePDF-1 was similar to that of (SaPDF), except for differences in the metal-binding sites. The other deformylase homologue, SePDF-2, was shown to have no peptide deformylase activity; the function of SePDF-2 needs to be further investigated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038174-0
2010-10-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3194.html?itemId=/content/journal/micro/10.1099/mic.0.038174-0&mimeType=html&fmt=ahah

References

  1. Adams J. M. 1968; On the release of the formyl group from nascent protein. J Mol Biol 33:571–589
    [Google Scholar]
  2. Apfel C. M., Locher H., Evers S., Takacs B., Hubschwerlen C., Pirson W., Page M. G., Keck W. 2001; Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother 45:1058–1064
    [Google Scholar]
  3. Baldwin E. T., Harris M. S., Yem A. W., Wolfe C. L., Vosters A. F., Curry K. A., Murray R. W., Bock J. H., Marshall V. P. other authors 2002; Crystal structure of type II peptide deformylase from Staphylococcus aureus. J Biol Chem 277:31163–31171
    [Google Scholar]
  4. Becker A., Schlichting I., Kabsch W., Schultz S., Wagner A. F. 1998; Structure of peptide deformylase and identification of the substrate binding site. J Biol Chem 273:11413–11416
    [Google Scholar]
  5. Bracchi-Ricard V., Nguyen K. T., Zhou Y., Rajagopalan P. T., Chakrabarti D., Pei D. 2001; Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396:162–170
    [Google Scholar]
  6. Bradshaw R. A., Brickey W. W., Walker K. W. 1998; N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23:263–267
    [Google Scholar]
  7. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M. other authors 1998; Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921
    [Google Scholar]
  8. Cai J., Han C., Hu T., Zhang J., Wu D., Wang F., Liu Y., Ding J., Chen K. other authors 2006; Peptide deformylase is a potential target for anti- Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Sci 15:2071–2081
    [Google Scholar]
  9. Chan M. K., Gong W., Rajagopalan P. T., Hao B., Tsai C. M., Pei D. 1997; Crystal structure of the Escherichia coli peptide deformylase. Biochemistry 36:13904–13909
    [Google Scholar]
  10. Chen D. Z., Patel D. V., Hackbarth C. J., Wang W., Dreyer G., Young D. C., Margolis P. S., Wu C., Ni Z. J. other authors 2000; Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39:1256–1262
    [Google Scholar]
  11. Dirk L. M., Williams M. A., Houtz R. L. 2001; Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis. Plant Physiol 127:97–107
    [Google Scholar]
  12. Dong M., Liu H. 2008; Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study. J Phys Chem B 112:10280–10290
    [Google Scholar]
  13. Emsley P., Cowtan K. 2004; Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132
    [Google Scholar]
  14. Escobar-Alvarez S., Goldgur Y., Yang G., Ouerfelli O., Li Y., Scheinberg D. A. 2009; Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol 387:1211–1228
    [Google Scholar]
  15. Evans P. R. 1993; Data reduction. In Proceedings of CCP4 Study Weekend on Data Collection and Processing pp 114–122 Warrington, UK: Daresbury Laboratory;
    [Google Scholar]
  16. Fieulaine S., Juillan-Binard C., Serero A., Dardel F., Giglione C., Meinnel T., Ferrer J. L. 2005; The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms. J Biol Chem 280:42315–42324
    [Google Scholar]
  17. Frottin F., Martinez A., Peynot P., Mitra S., Holz R. C., Giglione C., Meinnel T. 2006; The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5:2336–2349
    [Google Scholar]
  18. Giglione C., Pierre M., Meinnel T. 2000a; Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 36:1197–1205
    [Google Scholar]
  19. Giglione C., Serero A., Pierre M., Boisson B., Meinnel T. 2000b; Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19:5916–5929
    [Google Scholar]
  20. Götz F. 2002; Staphylococcus and biofilms. Mol Microbiol 43:1367–1378
    [Google Scholar]
  21. Groche D., Becker A., Schlichting I., Kabsch W., Schultz S., Wagner A. F. 1998; Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochem Biophys Res Commun 246:342–346
    [Google Scholar]
  22. Guilloteau J. P., Mathieu M., Giglione C., Blanc V., Dupuy A., Chevrier M., Gil P., Famechon A., Meinnel T. other authors 2002; The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 320:951–962
    [Google Scholar]
  23. Haas M., Beyer D., Gahlmann R., Freiberg C. 2001; YkrB is the main peptide deformylase in Bacillus subtilis, a eubacterium containing two functional peptide deformylases. Microbiology 147:1783–1791
    [Google Scholar]
  24. Han C., Wang Q., Dong L., Sun H., Peng S., Chen J., Yang Y., Yue J., Shen X. other authors 2004; Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Biochem Biophys Res Commun 319:1292–1298
    [Google Scholar]
  25. Kabsch W., Sander C. 1983; Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637
    [Google Scholar]
  26. Lazennec C., Meinnel T. 1997; Formate dehydrogenase-coupled spectrophotometric assay of peptide deformylase. Anal Biochem 244:180–182
    [Google Scholar]
  27. Lee M. D., She Y., Soskis M. J., Borella C. P., Gardner J. R., Hayes P. A., Dy B. M., Heaney M. L., Philips M. R. other authors 2004; Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest 114:1107–1116
    [Google Scholar]
  28. Leslie A. G. W. 1992; Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4+ESF-EAMCB Newsletter on Protein Crystallography 26:
    [Google Scholar]
  29. Li Y., Chen Z., Gong W. 2002; Enzymatic properties of a new peptide deformylase from pathogenic bacterium Leptospira interrogans. Biochem Biophys Res Commun 295:884–889
    [Google Scholar]
  30. Margolis P. S., Hackbarth C. J., Young D. C., Wang W., Chen D., Yuan Z., White R., Trias J. 2000; Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob Agents Chemother 44:1825–1831
    [Google Scholar]
  31. Mazel D., Pochet S., Marliere P. 1994; Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 13:914–923
    [Google Scholar]
  32. Meinnel T., Blanquet S. 1994; Characterization of the Thermus thermophilus locus encoding peptide deformylase and methionyl-tRNA(fMet) formyltransferase. J Bacteriol 176:7387–7390
    [Google Scholar]
  33. Meinnel T., Mechulam Y., Blanquet S. 1993; Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75:1061–1075
    [Google Scholar]
  34. Meinnel T., Lazennec C., Blanquet S. 1995; Mapping of the active site zinc ligands of peptide deformylase. J Mol Biol 254:175–183
    [Google Scholar]
  35. Meinnel T., Blanquet S., Dardel F. 1996; A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J Mol Biol 262:375–386
    [Google Scholar]
  36. Meinnel T., Lazennec C., Villoing S., Blanquet S. 1997; Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J Mol Biol 267:749–761
    [Google Scholar]
  37. Murshudov G. N., Vagin A. A., Dodson E. J. 1997; Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53240–255
    [Google Scholar]
  38. Nguyen K. T., Hu X., Colton C., Chakrabarti R., Zshu M. X., Pei D. 2003; Characterization of a human peptide deformylase: implications for antibacterial drug design. Biochemistry 42:9952–9958
    [Google Scholar]
  39. Nguyen K. T., Wu J. C., Boylan J. A., Gherardini F. C., Pei D. 2007; Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Arch Biochem Biophys 468:217–225
    [Google Scholar]
  40. Otto M. 2008; Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228
    [Google Scholar]
  41. Ragusa S., Blanquet S., Meinnel T. 1998; Control of peptide deformylase activity by metal cations. J Mol Biol 280:515–523
    [Google Scholar]
  42. Rajagopalan P. T., Datta A., Pei D. 1997; Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry 36:13910–13918
    [Google Scholar]
  43. Rajagopalan P. T., Grimme S., Pei D. 2000; Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133. Biochemistry 39:779–790
    [Google Scholar]
  44. Robien M. A., Nguyen K. T., Kumar A., Hirsh I., Turley S., Pei D., Hol W. G. 2004; An improved crystal form of Plasmodium falciparum peptide deformylase. Protein Sci 13:1155–1163
    [Google Scholar]
  45. Rupp M. E., Archer G. L. 1994; Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19:231–243
    [Google Scholar]
  46. Serero A., Giglione C., Sardini A., Martinez-Sanz J., Meinnel T. 2003; An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 278:52953–52963
    [Google Scholar]
  47. Sharma A., Khuller G. K., Sharma S. 2009; Peptide deformylase – a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin Ther Targets 13:753–765
    [Google Scholar]
  48. Smith K. J., Petit C. M., Aubart K., Smyth M., McManus E., Jones J., Fosberry A., Lewis C., Lonetto M. other authors 2003; Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Protein Sci 12:349–360
    [Google Scholar]
  49. Vagin A., Teplyakov A. 1997; MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025
    [Google Scholar]
  50. von Eiff C., Peters G., Heilmann C. 2002; Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2:677–685
    [Google Scholar]
  51. Wang Q., Zhang D., Wang J., Cai Z., Xu W. 2006; Docking studies of Nickel-Peptide deformylase (PDF) inhibitors: exploring the new binding pockets. Biophys Chem 122:43–49
    [Google Scholar]
  52. Zhou Z., Song X., Gong W. 2005; Novel conformational states of peptide deformylase from pathogenic bacterium Leptospira interrogans: implications for population shift. J Biol Chem 280:42391–42396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038174-0
Loading
/content/journal/micro/10.1099/mic.0.038174-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error