1887

Abstract

The emergence of multi-drug-resistant strains of emphasizes the need to develop new antibiotics. The unique and essential role of the peptide deformylase (PDF) in catalysing the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria makes it an attractive antibacterial drug target. In the present study, both deformylase homologues from (SePDF-1 and SePDF-2) were cloned and expressed, and their enzymic activities were characterized. Co-substituted SePDF-1 exhibited much higher enzymic activity ( / 6.3×10 M s) than those of Ni- and Zn-substituted SePDF-1, and SePDF-1 showed much weaker binding ability towards Ni than towards Co and Zn, which is different from PDF in (SaPDF), although they share 80 % amino-acid sequence identity. The determined crystal structure of SePDF-1 was similar to that of (SaPDF), except for differences in the metal-binding sites. The other deformylase homologue, SePDF-2, was shown to have no peptide deformylase activity; the function of SePDF-2 needs to be further investigated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038174-0
2010-10-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3194.html?itemId=/content/journal/micro/10.1099/mic.0.038174-0&mimeType=html&fmt=ahah

References

  1. Adams, J. M. ( 1968; ). On the release of the formyl group from nascent protein. J Mol Biol 33, 571–589.[CrossRef]
    [Google Scholar]
  2. Apfel, C. M., Locher, H., Evers, S., Takacs, B., Hubschwerlen, C., Pirson, W., Page, M. G. & Keck, W. ( 2001; ). Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother 45, 1058–1064.[CrossRef]
    [Google Scholar]
  3. Baldwin, E. T., Harris, M. S., Yem, A. W., Wolfe, C. L., Vosters, A. F., Curry, K. A., Murray, R. W., Bock, J. H., Marshall, V. P. & other authors ( 2002; ). Crystal structure of type II peptide deformylase from Staphylococcus aureus. J Biol Chem 277, 31163–31171.[CrossRef]
    [Google Scholar]
  4. Becker, A., Schlichting, I., Kabsch, W., Schultz, S. & Wagner, A. F. ( 1998; ). Structure of peptide deformylase and identification of the substrate binding site. J Biol Chem 273, 11413–11416.[CrossRef]
    [Google Scholar]
  5. Bracchi-Ricard, V., Nguyen, K. T., Zhou, Y., Rajagopalan, P. T., Chakrabarti, D. & Pei, D. ( 2001; ). Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum. Arch Biochem Biophys 396, 162–170.[CrossRef]
    [Google Scholar]
  6. Bradshaw, R. A., Brickey, W. W. & Walker, K. W. ( 1998; ). N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem Sci 23, 263–267.[CrossRef]
    [Google Scholar]
  7. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M. & other authors ( 1998; ). Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54, 905–921.
    [Google Scholar]
  8. Cai, J., Han, C., Hu, T., Zhang, J., Wu, D., Wang, F., Liu, Y., Ding, J., Chen, K. & other authors ( 2006; ). Peptide deformylase is a potential target for anti-Helicobacter pylori drugs: reverse docking, enzymatic assay, and X-ray crystallography validation. Protein Sci 15, 2071–2081.[CrossRef]
    [Google Scholar]
  9. Chan, M. K., Gong, W., Rajagopalan, P. T., Hao, B., Tsai, C. M. & Pei, D. ( 1997; ). Crystal structure of the Escherichia coli peptide deformylase. Biochemistry 36, 13904–13909.[CrossRef]
    [Google Scholar]
  10. Chen, D. Z., Patel, D. V., Hackbarth, C. J., Wang, W., Dreyer, G., Young, D. C., Margolis, P. S., Wu, C., Ni, Z. J. & other authors ( 2000; ). Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39, 1256–1262.[CrossRef]
    [Google Scholar]
  11. Dirk, L. M., Williams, M. A. & Houtz, R. L. ( 2001; ). Eukaryotic peptide deformylases. Nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis. Plant Physiol 127, 97–107.[CrossRef]
    [Google Scholar]
  12. Dong, M. & Liu, H. ( 2008; ). Origins of the different metal preferences of Escherichia coli peptide deformylase and Bacillus thermoproteolyticus thermolysin: a comparative quantum mechanical/molecular mechanical study. J Phys Chem B 112, 10280–10290.
    [Google Scholar]
  13. Emsley, P. & Cowtan, K. ( 2004; ). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132.[CrossRef]
    [Google Scholar]
  14. Escobar-Alvarez, S., Goldgur, Y., Yang, G., Ouerfelli, O., Li, Y. & Scheinberg, D. A. ( 2009; ). Structure and activity of human mitochondrial peptide deformylase, a novel cancer target. J Mol Biol 387, 1211–1228.[CrossRef]
    [Google Scholar]
  15. Evans, P. R. ( 1993; ). Data reduction. In Proceedings of CCP4 Study Weekend on Data Collection and Processing, pp. 114–122. Warrington, UK: Daresbury Laboratory.
  16. Fieulaine, S., Juillan-Binard, C., Serero, A., Dardel, F., Giglione, C., Meinnel, T. & Ferrer, J. L. ( 2005; ). The crystal structure of mitochondrial (Type 1A) peptide deformylase provides clear guidelines for the design of inhibitors specific for the bacterial forms. J Biol Chem 280, 42315–42324.[CrossRef]
    [Google Scholar]
  17. Frottin, F., Martinez, A., Peynot, P., Mitra, S., Holz, R. C., Giglione, C. & Meinnel, T. ( 2006; ). The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5, 2336–2349.[CrossRef]
    [Google Scholar]
  18. Giglione, C., Pierre, M. & Meinnel, T. ( 2000a; ). Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol 36, 1197–1205.
    [Google Scholar]
  19. Giglione, C., Serero, A., Pierre, M., Boisson, B. & Meinnel, T. ( 2000b; ). Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19, 5916–5929.[CrossRef]
    [Google Scholar]
  20. Götz, F. ( 2002; ). Staphylococcus and biofilms. Mol Microbiol 43, 1367–1378.[CrossRef]
    [Google Scholar]
  21. Groche, D., Becker, A., Schlichting, I., Kabsch, W., Schultz, S. & Wagner, A. F. ( 1998; ). Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochem Biophys Res Commun 246, 342–346.[CrossRef]
    [Google Scholar]
  22. Guilloteau, J. P., Mathieu, M., Giglione, C., Blanc, V., Dupuy, A., Chevrier, M., Gil, P., Famechon, A., Meinnel, T. & other authors ( 2002; ). The crystal structures of four peptide deformylases bound to the antibiotic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial agents. J Mol Biol 320, 951–962.[CrossRef]
    [Google Scholar]
  23. Haas, M., Beyer, D., Gahlmann, R. & Freiberg, C. ( 2001; ). YkrB is the main peptide deformylase in Bacillus subtilis, a eubacterium containing two functional peptide deformylases. Microbiology 147, 1783–1791.
    [Google Scholar]
  24. Han, C., Wang, Q., Dong, L., Sun, H., Peng, S., Chen, J., Yang, Y., Yue, J., Shen, X. & other authors ( 2004; ). Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori. Biochem Biophys Res Commun 319, 1292–1298.[CrossRef]
    [Google Scholar]
  25. Kabsch, W. & Sander, C. ( 1983; ). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.[CrossRef]
    [Google Scholar]
  26. Lazennec, C. & Meinnel, T. ( 1997; ). Formate dehydrogenase-coupled spectrophotometric assay of peptide deformylase. Anal Biochem 244, 180–182.[CrossRef]
    [Google Scholar]
  27. Lee, M. D., She, Y., Soskis, M. J., Borella, C. P., Gardner, J. R., Hayes, P. A., Dy, B. M., Heaney, M. L., Philips, M. R. & other authors ( 2004; ). Human mitochondrial peptide deformylase, a new anticancer target of actinonin-based antibiotics. J Clin Invest 114, 1107–1116.[CrossRef]
    [Google Scholar]
  28. Leslie, A. G. W. ( 1992; ). Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4+ESF-EAMCB Newsletter on Protein Crystallography 26.
    [Google Scholar]
  29. Li, Y., Chen, Z. & Gong, W. ( 2002; ). Enzymatic properties of a new peptide deformylase from pathogenic bacterium Leptospira interrogans. Biochem Biophys Res Commun 295, 884–889.[CrossRef]
    [Google Scholar]
  30. Margolis, P. S., Hackbarth, C. J., Young, D. C., Wang, W., Chen, D., Yuan, Z., White, R. & Trias, J. ( 2000; ). Peptide deformylase in Staphylococcus aureus: resistance to inhibition is mediated by mutations in the formyltransferase gene. Antimicrob Agents Chemother 44, 1825–1831.[CrossRef]
    [Google Scholar]
  31. Mazel, D., Pochet, S. & Marliere, P. ( 1994; ). Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J 13, 914–923.
    [Google Scholar]
  32. Meinnel, T. & Blanquet, S. ( 1994; ). Characterization of the Thermus thermophilus locus encoding peptide deformylase and methionyl-tRNA(fMet) formyltransferase. J Bacteriol 176, 7387–7390.
    [Google Scholar]
  33. Meinnel, T., Mechulam, Y. & Blanquet, S. ( 1993; ). Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli. Biochimie 75, 1061–1075.[CrossRef]
    [Google Scholar]
  34. Meinnel, T., Lazennec, C. & Blanquet, S. ( 1995; ). Mapping of the active site zinc ligands of peptide deformylase. J Mol Biol 254, 175–183.[CrossRef]
    [Google Scholar]
  35. Meinnel, T., Blanquet, S. & Dardel, F. ( 1996; ). A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J Mol Biol 262, 375–386.[CrossRef]
    [Google Scholar]
  36. Meinnel, T., Lazennec, C., Villoing, S. & Blanquet, S. ( 1997; ). Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J Mol Biol 267, 749–761.[CrossRef]
    [Google Scholar]
  37. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. ( 1997; ). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53, 240–255.
  38. Nguyen, K. T., Hu, X., Colton, C., Chakrabarti, R., Zshu, M. X. & Pei, D. ( 2003; ). Characterization of a human peptide deformylase: implications for antibacterial drug design. Biochemistry 42, 9952–9958.[CrossRef]
    [Google Scholar]
  39. Nguyen, K. T., Wu, J. C., Boylan, J. A., Gherardini, F. C. & Pei, D. ( 2007; ). Zinc is the metal cofactor of Borrelia burgdorferi peptide deformylase. Arch Biochem Biophys 468, 217–225.[CrossRef]
    [Google Scholar]
  40. Otto, M. ( 2008; ). Staphylococcal biofilms. Curr Top Microbiol Immunol 322, 207–228.
    [Google Scholar]
  41. Ragusa, S., Blanquet, S. & Meinnel, T. ( 1998; ). Control of peptide deformylase activity by metal cations. J Mol Biol 280, 515–523.[CrossRef]
    [Google Scholar]
  42. Rajagopalan, P. T., Datta, A. & Pei, D. ( 1997; ). Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry 36, 13910–13918.[CrossRef]
    [Google Scholar]
  43. Rajagopalan, P. T., Grimme, S. & Pei, D. ( 2000; ). Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133. Biochemistry 39, 779–790.[CrossRef]
    [Google Scholar]
  44. Robien, M. A., Nguyen, K. T., Kumar, A., Hirsh, I., Turley, S., Pei, D. & Hol, W. G. ( 2004; ). An improved crystal form of Plasmodium falciparum peptide deformylase. Protein Sci 13, 1155–1163.[CrossRef]
    [Google Scholar]
  45. Rupp, M. E. & Archer, G. L. ( 1994; ). Coagulase-negative staphylococci: pathogens associated with medical progress. Clin Infect Dis 19, 231–243.[CrossRef]
    [Google Scholar]
  46. Serero, A., Giglione, C., Sardini, A., Martinez-Sanz, J. & Meinnel, T. ( 2003; ). An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway. J Biol Chem 278, 52953–52963.[CrossRef]
    [Google Scholar]
  47. Sharma, A., Khuller, G. K. & Sharma, S. ( 2009; ). Peptide deformylase – a promising therapeutic target for tuberculosis and antibacterial drug discovery. Expert Opin Ther Targets 13, 753–765.[CrossRef]
    [Google Scholar]
  48. Smith, K. J., Petit, C. M., Aubart, K., Smyth, M., McManus, E., Jones, J., Fosberry, A., Lewis, C., Lonetto, M. & other authors ( 2003; ). Structural variation and inhibitor binding in polypeptide deformylase from four different bacterial species. Protein Sci 12, 349–360.[CrossRef]
    [Google Scholar]
  49. Vagin, A. & Teplyakov, A. ( 1997; ). MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30, 1022–1025.[CrossRef]
    [Google Scholar]
  50. von Eiff, C., Peters, G. & Heilmann, C. ( 2002; ). Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2, 677–685.[CrossRef]
    [Google Scholar]
  51. Wang, Q., Zhang, D., Wang, J., Cai, Z. & Xu, W. ( 2006; ). Docking studies of Nickel-Peptide deformylase (PDF) inhibitors: exploring the new binding pockets. Biophys Chem 122, 43–49.[CrossRef]
    [Google Scholar]
  52. Zhou, Z., Song, X. & Gong, W. ( 2005; ). Novel conformational states of peptide deformylase from pathogenic bacterium Leptospira interrogans: implications for population shift. J Biol Chem 280, 42391–42396.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038174-0
Loading
/content/journal/micro/10.1099/mic.0.038174-0
Loading

Data & Media loading...

. Sequence alignment of PDFs from different species [ PDF] (576 kb) Purification of SePDF-1 substituted by different metal cations [ PDF] (455 kb) Oligomeric state analysis of SePDF-1 in solution [ PDF] (452 kb) Transcription of and genes in at different growth phases [ PDF] (463 kb)

PDF

. Sequence alignment of PDFs from different species [ PDF] (576 kb) Purification of SePDF-1 substituted by different metal cations [ PDF] (455 kb) Oligomeric state analysis of SePDF-1 in solution [ PDF] (452 kb) Transcription of and genes in at different growth phases [ PDF] (463 kb)

PDF

. Sequence alignment of PDFs from different species [ PDF] (576 kb) Purification of SePDF-1 substituted by different metal cations [ PDF] (455 kb) Oligomeric state analysis of SePDF-1 in solution [ PDF] (452 kb) Transcription of and genes in at different growth phases [ PDF] (463 kb)

PDF

. Sequence alignment of PDFs from different species [ PDF] (576 kb) Purification of SePDF-1 substituted by different metal cations [ PDF] (455 kb) Oligomeric state analysis of SePDF-1 in solution [ PDF] (452 kb) Transcription of and genes in at different growth phases [ PDF] (463 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error