1887

Abstract

serovar Typhimurium (. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, . Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038117-0
2010-06-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1805.html?itemId=/content/journal/micro/10.1099/mic.0.038117-0&mimeType=html&fmt=ahah

References

  1. Akeda, Y. & Galán, J. E. ( 2005; ). Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915.[CrossRef]
    [Google Scholar]
  2. Anderson, D. M. & Schneewind, O. ( 1999; ). Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol Microbiol 31, 1139–1148.[CrossRef]
    [Google Scholar]
  3. Anderson, D. M., Fouts, D. E., Collmer, A. & Schneewind, O. ( 1999; ). Reciprocal secretion of proteins by the bacterial type III machines of plant and animal pathogens suggests universal recognition of mRNA targeting signals. Proc Natl Acad Sci U S A 96, 12839–12843.[CrossRef]
    [Google Scholar]
  4. Bajaj, V., Lucas, R. L., Hwang, C. & Lee, C. A. ( 1996; ). Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22, 703–714.[CrossRef]
    [Google Scholar]
  5. Bakowski, M. A., Cirulis, J. T., Brown, N. F., Finlay, B. B. & Brumell, J. H. ( 2007; ). SopD acts cooperatively with SopB during Salmonella enterica serovar Typhimurium invasion. Cell Microbiol 9, 2839–2855.[CrossRef]
    [Google Scholar]
  6. Botteaux, A., Sory, M. P., Biskri, L., Parsot, C. & Allaoui, A. ( 2009; ). MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 71, 449–460.[CrossRef]
    [Google Scholar]
  7. Boyd, A. P., Lambermont, I. & Cornelis, G. R. ( 2000; ). Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J Bacteriol 182, 4811–4821.[CrossRef]
    [Google Scholar]
  8. Brumell, J. H., Kujat-Choy, S., Brown, N. F., Vallance, B. A., Knodler, L. A. & Finlay, B. B. ( 2003; ). SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4, 36–48.[CrossRef]
    [Google Scholar]
  9. Cheng, L. W., Anderson, D. M. & Schneewind, O. ( 1997; ). Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol Microbiol 24, 757–765.[CrossRef]
    [Google Scholar]
  10. Cornelis, G. R. & Van, G. F. ( 2000; ). Assembly and function of type III secretory systems. Annu Rev Microbiol 54, 735–774.[CrossRef]
    [Google Scholar]
  11. Darwin, K. H. & Miller, V. L. ( 2001; ). Type III secretion chaperone-dependent regulation: activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J 20, 1850–1862.[CrossRef]
    [Google Scholar]
  12. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  13. Day, J. B., Guller, I. & Plano, G. V. ( 2000; ). Yersinia pestis YscG protein is a Syc-like chaperone that directly binds YscE. Infect Immun 68, 6466–6471.[CrossRef]
    [Google Scholar]
  14. Delahay, R. M. & Frankel, G. ( 2002; ). Coiled-coil proteins associated with type III secretion systems: a versatile domain revisited. Mol Microbiol 45, 905–916.[CrossRef]
    [Google Scholar]
  15. Deleage, G., Combet, C., Blanchet, C. & Geourjon, C. ( 2001; ). antheprot: an integrated protein sequence analysis software with client/server capabilities. Comput Biol Med 31, 259–267.[CrossRef]
    [Google Scholar]
  16. Ehrbar, K., Winnen, B. & Hardt, W. D. ( 2006; ). The chaperone binding domain of SopE inhibits transport via flagellar and SPI-1 TTSS in the absence of InvB. Mol Microbiol 59, 248–264.[CrossRef]
    [Google Scholar]
  17. Eichelberg, K. & Galán, J. E. ( 2000; ). The flagellar sigma factor FliA (σ 28) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun 68, 2735–2743.[CrossRef]
    [Google Scholar]
  18. Foultier, B., Troisfontaines, P., Muller, S., Opperdoes, F. R. & Cornelis, G. R. ( 2002; ). Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J Mol Evol 55, 37–51.[CrossRef]
    [Google Scholar]
  19. Frithz-Lindsten, E., Rosqvist, R., Johansson, L. & Forsberg, A. ( 1995; ). The chaperone-like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensible for targeting to the secretion loci. Mol Microbiol 16, 635–647.[CrossRef]
    [Google Scholar]
  20. Galán, J. E. ( 1999; ). Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 2, 46–50.[CrossRef]
    [Google Scholar]
  21. Galán, J. E. ( 2001; ). Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17, 53–86.[CrossRef]
    [Google Scholar]
  22. Galán, J. E. ( 2008; ). Energizing type III secretion machines: what is the fuel? Nat Struct Mol Biol 15, 127–128.[CrossRef]
    [Google Scholar]
  23. Ghosh, P. ( 2004; ). Process of protein transport by the type III secretion system. Microbiol Mol Biol Rev 68, 771–795.[CrossRef]
    [Google Scholar]
  24. Gibrat, J. F., Garnier, J. & Robson, B. ( 1987; ). Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. J Mol Biol 198, 425–443.[CrossRef]
    [Google Scholar]
  25. Gophna, U., Ron, E. Z. & Graur, D. ( 2003; ). Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events. Gene 312, 151–163.[CrossRef]
    [Google Scholar]
  26. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  27. Hayward, R. D. & Koronakis, V. ( 1999; ). Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18, 4926–4934.[CrossRef]
    [Google Scholar]
  28. Hensel, M. ( 2000; ). Salmonella pathogenicity island 2. Mol Microbiol 36, 1015–1023.[CrossRef]
    [Google Scholar]
  29. Hohmann, E. L. ( 2001; ). Nontyphoidal salmonellosis. Clin Infect Dis 32, 263–269.[CrossRef]
    [Google Scholar]
  30. Hoiseth, S. K. & Stocker, B. A. D. ( 1981; ). Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239.[CrossRef]
    [Google Scholar]
  31. Jiang, L., He, L. & Fountoulakis, M. ( 2004a; ). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023, 317–320.[CrossRef]
    [Google Scholar]
  32. Jiang, X., Rossanese, O. W., Brown, N. F., Kujat-Choy, S., Galán, J. E., Finlay, B. B. & Brumell, J. H. ( 2004b; ). The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. Mol Microbiol 54, 1186–1198.[CrossRef]
    [Google Scholar]
  33. Jones, M. A., Wood, M. W., Mullan, P. B., Watson, P. R., Wallis, T. S. & Galyov, E. E. ( 1998; ). Secreted effector proteins of Salmonella dublin act in concert to induce enteritis. Infect Immun 66, 5799–5804.
    [Google Scholar]
  34. Karavolos, M. H., Roe, A. J., Wilson, M., Henderson, J., Lee, J. J., Gally, D. L. & Khan, C. M. ( 2005; ). Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J Bacteriol 187, 1559–1567.[CrossRef]
    [Google Scholar]
  35. Kim, B. H., Kim, H. G., Kim, J. S., Jang, J. I. & Park, Y. K. ( 2007; ). Analysis of functional domains present in the N-terminus of the SipB protein. Microbiology 153, 2998–3008.[CrossRef]
    [Google Scholar]
  36. Lee, S. H. & Galán, J. E. ( 2003; ). InvB is a type III secretion-associated chaperone for the Salmonella enterica effector protein SopE. J Bacteriol 185, 7279–7284.[CrossRef]
    [Google Scholar]
  37. Lee, S. H. & Galán, J. E. ( 2004; ). Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol Microbiol 51, 483–495.[CrossRef]
    [Google Scholar]
  38. Lilic, M., Galkin, V. E., Orlova, A., VanLoock, M. S., Egelman, E. H. & Stebbins, C. E. ( 2003; ). Salmonella SipA polymerizes actin by stapling filaments with nonglobular protein arms. Science 301, 1918–1921.[CrossRef]
    [Google Scholar]
  39. Lloyd, S. A., Norman, M., Rosqvist, R. & Wolf-Watz, H. ( 2001; ). Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol 39, 520–531.[CrossRef]
    [Google Scholar]
  40. Lloyd, S. A., Sjostrom, M., Andersson, S. & Wolf-Watz, H. ( 2002; ). Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol Microbiol 43, 51–59.[CrossRef]
    [Google Scholar]
  41. Lodge, J., Douce, G. R., Amin, I. I., Bolton, A. J., Martin, G. D., Chatfield, S., Dougan, G., Brown, N. L. & Stephen, J. ( 1995; ). Biological and genetic characterization of TnphoA mutants of Salmonella typhimurium TML in the context of gastroenteritis. Infect Immun 63, 762–769.
    [Google Scholar]
  42. Marlovits, T. C., Kubori, T., Sukhan, A., Thomas, D. R., Galán, J. E. & Unger, V. M. ( 2004; ). Structural insights into the assembly of the type III secretion needle complex. Science 306, 1040–1042.[CrossRef]
    [Google Scholar]
  43. Miao, E. A. & Miller, S. I. ( 2000; ). A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc Natl Acad Sci U S A 97, 7539–7544.[CrossRef]
    [Google Scholar]
  44. Mota, L. J., Sorg, I. & Cornelis, G. R. ( 2005; ). Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252, 1–10.[CrossRef]
    [Google Scholar]
  45. Muller, S. A., Pozidis, C., Stone, R., Meesters, C., Chami, M., Engel, A., Economou, A. & Stahlberg, H. ( 2006; ). Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Mol Microbiol 61, 119–125.[CrossRef]
    [Google Scholar]
  46. Murray, R. A. & Lee, C. A. ( 2000; ). Invasion genes are not required for Salmonella enterica serovar Typhimurium to breach the intestinal epithelium: evidence that Salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun 68, 5050–5055.[CrossRef]
    [Google Scholar]
  47. Nguyen, L., Paulsen, I. T., Tchieu, J., Hueck, C. J. & Saier, M. H., Jr ( 2000; ). Phylogenetic analyses of the constituents of type III protein secretion systems. J Mol Microbiol Biotechnol 2, 125–144.
    [Google Scholar]
  48. Ochman, H. & Groisman, E. A. ( 1996; ). Distribution of pathogenicity islands in Salmonella spp. Infect Immun 64, 5410–5412.
    [Google Scholar]
  49. Russmann, H., Kubori, T., Sauer, J. & Galán, J. E. ( 2002; ). Molecular and functional analysis of the type III secretion signal of the Salmonella enterica InvJ protein. Mol Microbiol 46, 769–779.[CrossRef]
    [Google Scholar]
  50. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Sauer, R. T., Bolon, D. N., Burton, B. M., Burton, R. E., Flynn, J. M., Grant, R. A., Hersch, G. L., Joshi, S. A., Kenniston, J. A. & other authors ( 2004; ). Sculpting the proteome with AAA+ proteases and disassembly machines. Cell 119, 9–18.[CrossRef]
    [Google Scholar]
  52. Schlumberger, M. C. & Hardt, W. D. ( 2005; ). Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr Top Microbiol Immunol 291, 29–42.
    [Google Scholar]
  53. Sorg, J. A., Miller, N. C. & Schneewind, O. ( 2005; ). Substrate recognition of type III secretion machines – testing the RNA signal hypothesis. Cell Microbiol 7, 1217–1225.[CrossRef]
    [Google Scholar]
  54. Sorg, J. A., Blaylock, B. & Schneewind, O. ( 2006; ). Secretion signal recognition by YscN, the Yersinia type III secretion ATPase. Proc Natl Acad Sci U S A 103, 16490–16495.[CrossRef]
    [Google Scholar]
  55. Sory, M. P., Boland, A., Lambermont, I. & Cornelis, G. R. ( 1995; ). Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. Proc Natl Acad Sci U S A 92, 11998–12002.[CrossRef]
    [Google Scholar]
  56. Stebbins, C. E. & Galán, J. E. ( 2001; ). Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414, 77–81.[CrossRef]
    [Google Scholar]
  57. Tampakaki, A. P., Fadouloglou, V. E., Gazi, A. D., Panopoulos, N. J. & Kokkinidis, M. ( 2004; ). Conserved features of type III secretion. Cell Microbiol 6, 805–816.[CrossRef]
    [Google Scholar]
  58. Tree, J. J., Wolfson, E. B., Wang, D., Roe, A. J. & Gally, D. L. ( 2009; ). Controlling injection: regulation of type III secretion in enterohaemorrhagic Escherichia coli. Trends Microbiol 17, 361–370.[CrossRef]
    [Google Scholar]
  59. Wallis, T. S. & Galyov, E. E. ( 2000; ). Molecular basis of Salmonella-induced enteritis. Mol Microbiol 36, 997–1005.[CrossRef]
    [Google Scholar]
  60. Wang, D., Roe, A. J., McAteer, S., Shipston, M. J. & Gally, D. L. ( 2008; ). Hierarchal type III secretion of translocators and effectors from Escherichia coli O157 : H7 requires the carboxy terminus of SepL that binds to Tir. Mol Microbiol 69, 1499–1512.[CrossRef]
    [Google Scholar]
  61. Waterman, S. R. & Holden, D. W. ( 2003; ). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5, 501–511.[CrossRef]
    [Google Scholar]
  62. Wood, M. W., Williams, C., Upadhyay, A., Gill, A. C., Philippe, D. L., Galyov, E. E., van den Elsen, J. M. & Bagby, S. ( 2004; ). Structural analysis of Salmonella enterica effector protein SopD. Biochim Biophys Acta 1698, 219–226.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038117-0
Loading
/content/journal/micro/10.1099/mic.0.038117-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error