1887

Abstract

The ability of to act as an opportunistic fungal pathogen is linked to its ability to switch among different morphological forms. This conversion is an important feature of and is correlated with its pathogenesis. Many conserved positive and negative transcription factors regulate morphogenetic transition of . Here, we show the results of functional analysis of , which is an orthologue of the gene. We have cloned which has an ability to complement the . Δ mutant strain growth defect. Interestingly, although disruption of the gene did not affect cell growth in solid and liquid iron-limited conditions, the cell surface ferric reductase activity was significantly decreased. Importantly, deletion of in led to growth of a smooth colony with no peripheral hyphae. Moreover, virulence of an Δ/Δ mutant was markedly attenuated in a mouse model. Our results suggest that Aft2p represents a novel activator and that it functions in ferric reductase activity, morphogenesis and virulence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037978-0
2010-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2912.html?itemId=/content/journal/micro/10.1099/mic.0.037978-0&mimeType=html&fmt=ahah

References

  1. Almeida R. S., Wilson D., Hube B. 2009; Candida albicans iron acquisition within the host. FEMS Yeast Res 9:1000–1012
    [Google Scholar]
  2. Baek Y. U., Li M., Davis D. A. 2008; Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors. Eukaryot Cell 7:1168–1179
    [Google Scholar]
  3. Banerjee M., Thompson D. S., Lazzell A., Carlisle P. L., Pierce C., Monteagudo C., López-Ribot J. L., Kadosh D. 2008; UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19:1354–1365
    [Google Scholar]
  4. Barelle C. J., Priest C. L., MacCallum D. M., Gow N. A. R., Odds F. C., Brown A. J. P. 2006; Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971
    [Google Scholar]
  5. Berman J. 2006; Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol 9:595–601
    [Google Scholar]
  6. Biswas S., Van D. P., Datta A. 2007; Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev 71:348–376
    [Google Scholar]
  7. Blaiseau P. L., Lesuisse E., Camadro J. M. 2001; Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem 276:34221–34226
    [Google Scholar]
  8. Byers B. R., Arceneaux J. E. L. 1998; Microbial iron transport: iron acquisition by pathogenic microorganisms. Met Ions Biol Syst 35:37–66
    [Google Scholar]
  9. Cao F., Lane S., Raniga P. P., Lu Y., Zhou Z., Ramon K., Chen J., Liu H. 2006; The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17:295–307
    [Google Scholar]
  10. Carlisle P. L., Banerjee M., Lazzell A., Monteagudo C., Lopez-Ribot J. L., Kadosh D. 2009; Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A 106:599–604
    [Google Scholar]
  11. Casas C., Aldea M., Espinet C., Gallego C., Gil R., Herrero E. 1997; The AFT1 transcriptional factor is differentially required for expression of high-affinity iron uptake genes in Saccharomyces cerevisiae. Yeast 13:621–643
    [Google Scholar]
  12. Courel M., Lallet S., Camadro J. M., Blaiseau P. L. 2005; Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol 25:6760–6771
    [Google Scholar]
  13. Davis D., Edwards J. E. Jr, Mitchell A. P., Ibrahim A. S. 2000a; Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68:5953–5959
    [Google Scholar]
  14. Davis D., Wilson R. B., Mitchell A. P. 2000b; RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol 20:971–978
    [Google Scholar]
  15. Doedt T., Krishnamurthy S., Bockmühl D. P. B., Tebarth B., Stempel C., Russel C. L., Brown A. J. P., Ernst J. F. 2004; APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180
    [Google Scholar]
  16. Homann O. R., Dea J., Noble S. M., Johnson A. D. 2009; A phenotypic profile of the Candida albicans regulatory network. PLoS Genet 5:e1000783
    [Google Scholar]
  17. Klepser M. E. 2006; Candida resistance and its clinical relevance. Pharmacotherapy 26:68S–75S
    [Google Scholar]
  18. Knight S. A., Vilaire G., Lesuisse E., Dancis A. 2005; Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 73:5482–5492
    [Google Scholar]
  19. Lan C. Y., Rodarte G., Murillo L. A., Jones T., Davis R. W., Dungan J., Newport G., Agabian N. 2004; Regulatory networks affected by iron availability in Candida albicans. Mol Microbiol 53:1451–1469
    [Google Scholar]
  20. Liang Y., Gui L., Wei D.-S., Zheng W., Xing L.-J., Li M.-C. 2009; Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor. FEMS Yeast Res 9:270–277
    [Google Scholar]
  21. Liu H., Köhler J., Fink G. R. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:1723–1726
    [Google Scholar]
  22. Lo H. J., Köhler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949
    [Google Scholar]
  23. Mitchell P. J., Tjian R. 1989; Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378
    [Google Scholar]
  24. Murad A. M. A., d'Enfert C., Gaillardin C., Tournu L., Tekaia F., Talibi D., Marechal D., Marchais V., Cottin J., Brown A. J. P. 2001; Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993
    [Google Scholar]
  25. Philpott C. C., Protchenko O. 2008; Response to iron deprivation in Saccharomyces cerevisiae. Eukaryot Cell 7:20–27
    [Google Scholar]
  26. Ramanan N., Wang Y. 2000; A high-affinity iron permease essential for Candida albicans virulence. Science 288:1062–1064
    [Google Scholar]
  27. Rutherford J. C., Jaron S., Ray E., Brown P. O., Winge D. R. 2001; A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A 98:14322–14327
    [Google Scholar]
  28. Rutherford J. C., Jaron S., Winge D. R. 2003; Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem 278:27636–27643
    [Google Scholar]
  29. Thomas B. J., Rothstein R. 1989; Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630
    [Google Scholar]
  30. Wilson R. B., Davis D., Mitchell A. P. 1999; Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874
    [Google Scholar]
  31. Yamaguchi-Iwai Y., Dancis A., Klausner R. D. 1995; AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14:1231–1239
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037978-0
Loading
/content/journal/micro/10.1099/mic.0.037978-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error