1887

Abstract

Synthesis of the siderophore yersiniabactin (Ybt) proceeds by a mixed nonribosomal peptide synthetase/polyketide synthase mechanism. Transcription of genes encoding biosynthetic and transport functions is repressed under excess iron conditions by Fur, but is also activated by Ybt via the transcriptional regulator YbtA. While mutations in most biosynthetic genes and negate transcription activation from the regulated promoters, three biosynthetic mutations do not reduce this transcriptional activation. Here we show that two of these mutants, one lacking the putative type II thioesterase (TE) YbtT and the other with a mutation in the TE domain of HMWP1, produce reduced levels of authentic Ybt that are capable of signalling activity. Alanine substitutions in two residues of YbtT that are essential for catalytic activity in other type II TEs reduced the ability of to grow under iron-chelated conditions. The third mutant, which lacks the salicylate synthase YbtS, did not make authentic Ybt but did produce a signalling molecule. Finally, a Δ strain of which lacks essential Ybt biosynthetic genes, also produced a signalling molecule that can activate transcription of genes. The non-Ybt signal molecules from these two mutants are likely separate compounds. While these compounds are not biologically relevant to normal Ybt regulation, a comparison of the structures of Ybt and other signalling molecules will help in determining the chemical structures recognized as a Ybt signal.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037945-0
2010-07-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2226.html?itemId=/content/journal/micro/10.1099/mic.0.037945-0&mimeType=html&fmt=ahah

References

  1. Anisimov, R., Brem, D., Heesemann, J. & Rakin, A. ( 2005; ). Molecular mechanism of YbtA-mediated transcriptional regulation of divergent overlapping promoters ybtA and irp6 of Yersinia enterocolitica. FEMS Microbiol Lett 250, 27–32.[CrossRef]
    [Google Scholar]
  2. Bearden, S. W. & Perry, R. D. ( 1999; ). The Yfe system of Yersinia pestis transports iron and manganese and is required for full virulence of plague. Mol Microbiol 32, 403–414.[CrossRef]
    [Google Scholar]
  3. Bearden, S. W., Fetherston, J. D. & Perry, R. D. ( 1997; ). Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect Immun 65, 1659–1668.
    [Google Scholar]
  4. Beesley, E. D., Brubaker, R. R., Janssen, W. A. & Surgalla, M. J. ( 1967; ). Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94, 19–26.
    [Google Scholar]
  5. Bobrov, A. G., Geoffroy, V. A. & Perry, R. D. ( 2002; ). Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase. Infect Immun 70, 4204–4214.[CrossRef]
    [Google Scholar]
  6. Braun, V. ( 2001; ). Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291, 67–79.[CrossRef]
    [Google Scholar]
  7. Braun, V. ( 2005; ). Bacterial iron transport related to virulence. Contrib Microbiol 12, 210–233.
    [Google Scholar]
  8. Brickman, T. J. & Armstrong, S. K. ( 2002; ). Bordetella interspecies allelic variation in AlcR inducer requirements: identification of a critical determinant of AlcR inducer responsiveness and construction of an alcR(Con) mutant allele. J Bacteriol 184, 1530–1539.[CrossRef]
    [Google Scholar]
  9. Brickman, T. J. & Armstrong, S. K. ( 2009; ). Temporal signaling and differential expression of Bordetella iron transport systems: the role of ferrimones and positive regulators. Biometals 22, 33–41.[CrossRef]
    [Google Scholar]
  10. Brickman, T. J., Kang, H. Y. & Armstrong, S. K. ( 2001; ). Transcriptional activation of Bordetella alcaligin siderophore genes requires the AlcR regulator with alcaligin as inducer. J Bacteriol 183, 483–489.[CrossRef]
    [Google Scholar]
  11. Bullen, J. J., Rogers, H. J., Spalding, P. B. & Ward, C. G. ( 2005; ). Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43, 325–330.[CrossRef]
    [Google Scholar]
  12. Butler, A. R., Bate, N. & Cundliffe, E. ( 1999; ). Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. Chem Biol 6, 287–292.[CrossRef]
    [Google Scholar]
  13. Chambers, C. E., McIntyre, D. D., Mouck, M. & Sokol, P. A. ( 1996; ). Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica. Biometals 9, 157–167.
    [Google Scholar]
  14. Crosa, J. H. ( 1997; ). Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61, 319–336.
    [Google Scholar]
  15. Crosa, J. H. & Walsh, C. T. ( 2002; ). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66, 223–249.[CrossRef]
    [Google Scholar]
  16. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Yersinia pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  17. Drechsel, H., Stephan, H., Lotz, R., Haag, H., Zähner, H., Hantke, K. & Jung, G. ( 1995; ). Structure elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains. Liebigs Ann 1995, 1727–1733.[CrossRef]
    [Google Scholar]
  18. Fetherston, J. D., Schuetze, P. & Perry, R. D. ( 1992; ). Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol Microbiol 6, 2693–2704.[CrossRef]
    [Google Scholar]
  19. Fetherston, J. D., Lillard, J. W., Jr & Perry, R. D. ( 1995; ). Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 177, 1824–1833.
    [Google Scholar]
  20. Fetherston, J. D., Bearden, S. W. & Perry, R. D. ( 1996; ). YbtA, an AraC-type regulator of the Yersinia pestis pesticin/yersiniabactin receptor. Mol Microbiol 22, 315–325.[CrossRef]
    [Google Scholar]
  21. Fetherston, J. D., Bertolino, V. J. & Perry, R. D. ( 1999; ). YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol Microbiol 32, 289–299.[CrossRef]
    [Google Scholar]
  22. Fetherston, J. D., Kirillina, O., Bobrov, A. G., Paulley, J. T. & Perry, R. D. ( 2010; ). The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague. Infect Immun 78, 2045–2052.[CrossRef]
    [Google Scholar]
  23. Gehring, A. M., DeMoll, E., Fetherston, J. D., Mori, I., Mayhew, G. F., Blattner, F. R., Walsh, C. T. & Perry, R. D. ( 1998a; ). Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem Biol 5, 573–586.[CrossRef]
    [Google Scholar]
  24. Gehring, A. M., Mori, I., Perry, R. D. & Walsh, C. T. ( 1998b; ). The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37, 11637–11650.[CrossRef]
    [Google Scholar]
  25. Geoffroy, V. A., Fetherston, J. D. & Perry, R. D. ( 2000; ). Yersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation. Infect Immun 68, 4452–4461.[CrossRef]
    [Google Scholar]
  26. Gong, S., Bearden, S. W., Geoffroy, V. A., Fetherston, J. D. & Perry, R. D. ( 2001; ). Characterization of the Yersinia pestis Yfu ABC iron transport system. Infect Immun 69, 2829–2837.[CrossRef]
    [Google Scholar]
  27. Kaniga, K., Delor, I. & Cornelis, G. R. ( 1991; ). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109, 137–141.[CrossRef]
    [Google Scholar]
  28. Keating, T. A., Miller, D. A. & Walsh, C. T. ( 2000; ). Expression, purification, and characterization of HMWP2, a 229 kDa, six domain protein subunit of yersiniabactin synthetase. Biochemistry 39, 4729–4739.[CrossRef]
    [Google Scholar]
  29. Kerbarh, O., Ciulli, A., Howard, N. I. & Abell, C. ( 2005; ). Salicylate biosynthesis: overexpression, purification, and characterization of Irp9, a bifunctional salicylate synthase from Yersinia enterocolitica. J Bacteriol 187, 5061–5066.[CrossRef]
    [Google Scholar]
  30. Kotowska, M., Pawlik, K., Smulczyk-Krawczyszyn, A., Bartosz-Bechowski, H. & Kuczek, K. ( 2009; ). Type II thioesterase ScoT, associated with Streptomyces coelicolor A3(2) modular polyketide synthase Cpk, hydrolyzes acyl residues and has a preference for propionate. Appl Environ Microbiol 75, 887–896.[CrossRef]
    [Google Scholar]
  31. Leduc, D., Battesti, A. & Bouveret, E. ( 2007; ). The hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB. J Bacteriol 189, 7112–7126.[CrossRef]
    [Google Scholar]
  32. Lesic, B. & Carniel, E. ( 2004; ). The high pathogenicity island: a broad-host-range pathogenicity island. In Yersinia Molecular and Cellular Biology, pp. 285–306. Edited by E. Carniel & B. J. Hinnebusch. Wymondham, UK: Horizon Bioscience.
  33. Linne, U., Schwarzer, D., Schroeder, G. N. & Marahiel, M. A. ( 2004; ). Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis. Eur J Biochem 271, 1536–1545.[CrossRef]
    [Google Scholar]
  34. Michel, L., González, N., Jagdeep, S., Nguyen-Ngoc, T. & Reimmann, C. ( 2005; ). PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58, 495–509.[CrossRef]
    [Google Scholar]
  35. Miethke, M. & Marahiel, M. A. ( 2007; ). Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71, 413–451.[CrossRef]
    [Google Scholar]
  36. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Miller, D. A., Luo, L., Hillson, N., Keating, T. A. & Walsh, C. T. ( 2002; ). Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol 9, 333–344.[CrossRef]
    [Google Scholar]
  38. Miller, M. C., Parkin, S., Fetherston, J. D., Perry, R. D. & DeMoll, E. ( 2006; ). Crystal structure of ferric-yersiniabactin, a virulence factor of Yersinia pestis. J Inorg Biochem 100, 1495–1500.[CrossRef]
    [Google Scholar]
  39. Pelludat, C., Brem, D. & Heesemann, J. ( 2003; ). Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol 185, 5648–5653.[CrossRef]
    [Google Scholar]
  40. Perry, R. D. ( 2004; ). Yersinia. In Iron Transport in Bacteria, pp. 219–240. Edited by J. H. Crosa, A. R. Mey & S. M. Payne. Washington, DC: American Society for Microbiology.
  41. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  42. Perry, R. D. & Fetherston, J. D. ( 2004; ). Iron and heme uptake systems. In Yersinia Molecular and Cellular Biology, pp. 257–283. Edited by E. Carniel & B. J. Hinnebusch. Wymondham, UK: Horizon Bioscience.
  43. Perry, R. D., Pendrak, M. L. & Schuetze, P. ( 1990; ). Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172, 5929–5937.
    [Google Scholar]
  44. Perry, R. D., Straley, S. C., Fetherston, J. D., Rose, D. J., Gregor, J. & Blattner, F. R. ( 1998; ). DNA sequencing and analysis of the low-Ca2+-response plasmid pCD1 of Yersinia pestis KIM5. Infect Immun 66, 4611–4623.
    [Google Scholar]
  45. Perry, R. D., Balbo, P. B., Jones, H. A., Fetherston, J. D. & DeMoll, E. ( 1999; ). Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145, 1181–1190.[CrossRef]
    [Google Scholar]
  46. Perry, R. D., Bearden, S. W. & Fetherston, J. D. ( 2001; ). Iron and heme acquisition and storage systems of Yersinia pestis. Recent Res Dev Microbiol 5, 13–27.
    [Google Scholar]
  47. Perry, R. D., Abney, J., Mier, I., Jr, Lee, Y., Bearden, S. W. & Fetherston, J. D. ( 2003a; ). Regulation of the Yersinia pestis Yfe and Ybt iron transport systems. Adv Exp Med Biol 529, 275–283.
    [Google Scholar]
  48. Perry, R. D., Shah, J., Bearden, S. W., Thompson, J. M. & Fetherston, J. D. ( 2003b; ). Yersinia pestis TonB: role in iron, heme and hemoprotein utilization. Infect Immun 71, 4159–4162.[CrossRef]
    [Google Scholar]
  49. Perry, R. D., Bobrov, A. G., Kirillina, O., Jones, H. A., Pedersen, L. L., Abney, J. & Fetherston, J. D. ( 2004; ). Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186, 1638–1647.[CrossRef]
    [Google Scholar]
  50. Schaible, U. E. & Kaufmann, S. H. E. ( 2004; ). Iron and microbial infection. Nat Rev Microbiol 2, 946–953.[CrossRef]
    [Google Scholar]
  51. Schneider, A. & Marahiel, M. A. ( 1998; ). Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol 169, 404–410.[CrossRef]
    [Google Scholar]
  52. Staggs, T. M., Fetherston, J. D. & Perry, R. D. ( 1994; ). Pleiotropic effects of a Yersinia pestis fur mutation. J Bacteriol 176, 7614–7624.
    [Google Scholar]
  53. Suo, Z., Walsh, C. T. & Miller, D. A. ( 1999; ). Tandem heterocyclization activity of the multidomain 230 kDa HMWP2 subunit of Yersinia pestis yersiniabactin synthetase: interaction of the 1–1382 and 1383–2035 fragments. Biochemistry 38, 14023–14035.[CrossRef]
    [Google Scholar]
  54. Surgalla, M. J. & Beesley, E. D. ( 1969; ). Congo red-agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18, 834–837.
    [Google Scholar]
  55. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  56. Venturi, V., Weisbeek, P. & Koster, M. ( 1995; ). Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. Mol Microbiol 17, 603–610.[CrossRef]
    [Google Scholar]
  57. Wang, R. F. & Kushner, S. R. ( 1991; ). Construction of versatile low-copy-number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100, 195–199.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037945-0
Loading
/content/journal/micro/10.1099/mic.0.037945-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error