1887

Abstract

The K-12 gene encodes a protein with domains associated with cyclic di-GMP signalling: GGDEF (associated with diguanylate cyclase activity) and EAL (associated with cyclic di-GMP phosphodiesterase activity). Here, it is shown that is expressed under anaerobic conditions from a class II FNR (regulator of fumarate and nitrate reduction)-dependent promoter. Anaerobic expression of is greatest in stationary phase, and in cultures grown at 28 °C, suggesting that low growth rates promote expression. Mutation of resulted in altered cell surface properties and enhanced sensitivity when anaerobic cultures were exposed to peroxides. The purified YfgF GGDEF-EAL (YfgF) and EAL (YfgF) domains possessed cyclic di-GMP-specific phosphodiesterase activity, but lacked diguanylate cyclase activity. However, the catalytically inactive GGDEF domain was required for YfgF dimerization and enhanced cyclic di-GMP phosphodiesterase activity in the presence of physiological concentrations of Mg. The cyclic di-GMP phosphodiesterase activity of YfgF and YfgF was inhibited by the product of the reaction, 5′-phosphoguanylyl-(3′–5′)-guanosine (pGpG). Thus, it is shown that the gene encodes an anaerobic cyclic di-GMP phosphodiesterase that is involved in remodelling the cell surface of K-12 and in the response to peroxide shock, with implications for integrating three global regulatory networks, i.e. oxygen regulation, cyclic di-GMP signalling and the oxidative stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037887-0
2010-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2873.html?itemId=/content/journal/micro/10.1099/mic.0.037887-0&mimeType=html&fmt=ahah

References

  1. Achebach S., Selmer T., Unden G. 2005; Properties and significance of apoFNR as a second form of air-inactivated [4Fe–4S] FNR of Escherichia coli. FEBS J 272:4260–4269
    [Google Scholar]
  2. Anjem A., Varghese S., Imlay J. I. 2009; Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72:844–858
    [Google Scholar]
  3. Antoniani D., Bocci P., Maciag A., Raffaelli N., Landini P. 2010; Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85:1095–1104
    [Google Scholar]
  4. Browning D., Lee D., Green J., Busby S. 2003; Secrets of bacterial transcription initiation taught by the Escherichia coli FNR protein. In Signals, Switches, Regulons and Cascades: Control of Bacterial Gene Expression pp 127–142 Edited by Hodgson D. A., Thomas C. M. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  5. Chan C., Paul R., Samoray D., Amiot N. C., Giese B., Jenal U., Schirmer T. 2004; Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A 101:17084–17089
    [Google Scholar]
  6. Chang A. L., Tuckerman J. R., Gonzalez G., Mayer R., Weinhouse H., Volman G., Amikan D., Benziman M., Gilles-Gonzalez M.-A. 2001; Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40:3420–3426
    [Google Scholar]
  7. Christen M., Christen B., Folcher M., Schauerte A., Jenal U. 2005; Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280:30829–30837
    [Google Scholar]
  8. Christen B., Christen M., Paul R., Schmid F., Folcher M., Jenoe P., Meuwly M., Jenal U. 2006; Allosteric control of cyclic di-GMP signaling. J Biol Chem 281:32015–32024
    [Google Scholar]
  9. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  10. Constantinidou C., Hobman J. L., Griffiths L., Patel M. D., Penn C. W., Cole J. A., Overton T. W. 2006; A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL and NarPQ as Escherichia coli adapts from aerobic to anaerobic growth. J Biol Chem 281:4802–4815
    [Google Scholar]
  11. Delgado-Nixon V. M., Gonzalez G., Gilles-Gonzalez M. A. 2000; Dos, a heme-binding PAS domain protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39:2685–2691
    [Google Scholar]
  12. Duerig A., Abel S., Folcher M., Nicollier M., Schwede T., Amiot N., Giese B., Jenal U. 2009; Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23:93–104
    [Google Scholar]
  13. Eiglmeier K., Honore N., Iuchi S., Lin E. C. C., Cole S. T. 1989; Molecular genetic analysis of FNR-dependent promoters. Mol Microbiol 3:869–878
    [Google Scholar]
  14. Galperin M. Y., Nikolskaya A. N., Koonin E. V. 2001; Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21
    [Google Scholar]
  15. Girgis H. S., Liu Y., Ryu W. S., Tavazoie S. 2007; A comprehensive genetic characterization of bacterial motility. PLoS Genet 3:1644–1660
    [Google Scholar]
  16. Green J., Paget M. S. 2004; Bacterial redox sensors. Nat Rev Microbiol 2:954–966
    [Google Scholar]
  17. Green J., Crack J. C., Thomson A. J., Le Brun N. E. 2009; Bacterial sensors of oxygen. Curr Opin Microbiol 12:145–151
    [Google Scholar]
  18. Harshey R. M., Matsuyama T. 1994; Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci U S A 91:8631–8635
    [Google Scholar]
  19. Hecht G. B., Newton A. 1995; Identification of a novel response regulator required for the swarmer-to-stalked cell transition in Caulobacter crescentus. J Bacteriol 177:6223–6229
    [Google Scholar]
  20. Hisert K. B., MacCoss M., Shiloh M. U., Darwin K. H., Singh S., Jones R. A., Ehrt S., Zhang Z., Gaffney B. L. other authors 2005; A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial virulence in mice, anti-oxidant defence and killing of macrophages: role of cyclic-diGMP. Mol Microbiol 56:1234–1245
    [Google Scholar]
  21. Hoffmann K., Stoffel W. 1993; TMbase – a database of membrane spanning protein segments. Biol Chem Hoppe Seyler 374:166
    [Google Scholar]
  22. Jenal U. 2004; Cyclic diguanosine monophosphate comes of age: a novel secondary messenger involved in modulating cell surface structures in bacteria?. Curr Opin Microbiol 7:185–191
    [Google Scholar]
  23. Jenal U., Malone J. 2006; Mechanisms of cyclic-di-GMP signalling in bacteria. Annu Rev Genet 40:385–407
    [Google Scholar]
  24. Jervis A. J., Green J. 2007; In vivo demonstration of FNR dimers in response to lower O2 availability. J Bacteriol 189:2930–2932
    [Google Scholar]
  25. Kang Y., Durfee T., Glasner J. D., Qiu Y., Frisch D., Winterberg K. M., Blattner F. R. 2004; Systematic mutagenesis of the Escherichia coli genome. J Bacteriol 186:4921–4930
    [Google Scholar]
  26. Kang Y., Weber K. D., Qiu Y., Kiley P. J., Blattner F. R. 2005; Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 187:1135–1160
    [Google Scholar]
  27. Kehres D. G., Zaharik M. L., Finlay B. B., Maguire M. E. 2000; The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol 36:1085–1100
    [Google Scholar]
  28. Kulasakara H., Lee V., Brencic A., Liberati N., Urbach J., Miyata S., Lee D. G., Neely A. N., Hyodo M. other authors 2006; Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′–5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103:2839–2844
    [Google Scholar]
  29. Lazazzera B. A., Beinert H., Khoroshilova N., Kennedy M. C., Kiley P. J. 1996; DNA binding and dimerization of the Fe-S-containing FNR protein from Escherichia coli are regulated by oxygen. J Biol Chem 271:2762–2768
    [Google Scholar]
  30. Lee V. T., Matewish J. M., Kessler J. L., Hyodo M., Hayakowa Y., Lory S. 2007; A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484
    [Google Scholar]
  31. Lennox E. S. 1955; Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206
    [Google Scholar]
  32. Martinez E., Bartolome B., Delacruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZα reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162
    [Google Scholar]
  33. Medicis E. D., Paquette J., Gauthier J. J., Shapcott D. 1986; Magnesium and manganese content of halophilic bacteria. Appl Environ Microbiol 52:567–573
    [Google Scholar]
  34. Meng W., Green J., Guest J. R. 1997; FNR-dependent repression of ndh gene expression requires two upstream FNR-binding sites. Microbiology 143:1521–1532
    [Google Scholar]
  35. Miller J. H. 1972; Assay of β-galactosidase. In Experiments in Molecular Genetics pp 352–355 Edited by Miller J. H. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Nikolskaya A. N., Mulkidjanian A. Y., Beech I. B., Galperin M. Y. 2003; MASE1 and MASE2: two novel integral membrane sensory domains. J Mol Microbiol Biotechnol 5:11–16
    [Google Scholar]
  37. Partridge J. D., Scott C., Tang Y., Poole R. K., Green J. 2006; Escherichia coli transcriptome dynamics during the transition from anaerobic to aerobic conditions. J Biol Chem 281:27806–27815
    [Google Scholar]
  38. Partridge J. D., Poole R. K., Green J. 2007a; The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. Microbiology 153:1499–1509
    [Google Scholar]
  39. Partridge J. D., Sanguinetti G., Dibden D. P., Roberts R. E., Poole R. K., Green J. 2007b; Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J Biol Chem 282:11230–11237
    [Google Scholar]
  40. Paul R., Weiser S., Amiot N. C., Chan C., Schirmer T., Giese B., Jenal U. 2004; Cell cycle dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727
    [Google Scholar]
  41. Paul R., Abel S., Wassmann P., Beck A., Heerklotz H., Jenal U. 2007; Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem 282:29170–29177
    [Google Scholar]
  42. Pei J., Grishin N. V. 2001; GGDEF domain is homologous to adenylyl cyclase. Proteins 42:210–216
    [Google Scholar]
  43. Pesavento C., Hengge R. 2009; Bacterial nucleotide-based second messengers. Curr Opin Microbiol 12:170–176
    [Google Scholar]
  44. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R. 2008; Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–2446
    [Google Scholar]
  45. Poteete A. R., Fenton A. C. 1984; λ red-dependent growth and recombination of phage P22. Virology 134:161–167
    [Google Scholar]
  46. Powell B. S., Court D. L., Nakamura Y., Rivas M. P., Turnbough C. L. Jr 1994; Rapid confirmation of single copy lambda prophage integration by PCR. Nucleic Acids Res 22:5765–5766
    [Google Scholar]
  47. Römling U., Amikam D. 2006; Cyclic-di-GMP as a second messenger. Curr Opin Microbiol 9:218–228
    [Google Scholar]
  48. Ross P., Weinhouse H., Aloni Y., Michaeli D., Weinburger-Ohana P., Mayer R., Braun S., de Vroom E., van der Marel G. A. other authors 1987; Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylate. Nature 325:279–281
    [Google Scholar]
  49. Ryan R. P., Fouhy Y., Lucey J. F., Dow J. M. 2006; Cyclic-di-GMP signalling in bacteria: recent advances and new puzzles. J Bacteriol 188:8327–8334
    [Google Scholar]
  50. Ryjenkov D. A., Tarutina M., Moskvin O. M., Gomelsky M. 2005; Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J Bacteriol 187:1792–1798
    [Google Scholar]
  51. Ryjenkov D. A., Simm R., Römling U., Gomelsky M. 2006; The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314
    [Google Scholar]
  52. Salmon K., Hung S. P., Mekjian K., Baldi P., Hatfield G. W., Gunsalus R. P. 2003; Global gene expression profiling in Escherichia coli K12: the effects of oxygen availability and FNR. J Biol Chem 278:29837–29855
    [Google Scholar]
  53. Sambrook J. W., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Sasakura Y., Hirata S., Sugiyama S., Suzuki S., Taguchi S., Watanabe M., Matsui T., Sagami I., Shimizu T. 2002; Characterization of a direct oxygen sensor heme protein from Escherichia coli. Effects of heme redox states and mutations at the heme binding site on catalysis and structure. J Biol Chem 277:23821–23827
    [Google Scholar]
  55. Schmidt A. J., Ryjenkov D. A., Gomelsky M. 2005; Ubiquitous protein domain EAL encodes cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781
    [Google Scholar]
  56. Simm R., Morr M., Kader A., Nimtz M., Römling U. 2004; GGDEF and EAL domains inversely regulate cyclic-di-GMP levels and transition from sessility to motility. Mol Microbiol 53:1123–1134
    [Google Scholar]
  57. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96
    [Google Scholar]
  58. Solano C., Garcia B., Latasa C., Toledo-Arana A., Zorraquino V., Valle J., Casals J., Pedroso E., Lasa I. 2009; Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signalling network in Salmonella. Proc Natl Acad Sci U S A 106:7997–8002
    [Google Scholar]
  59. Sommerfeldt N., Possling A., Becker G., Pesavento C., Tschowri N., Hengge R. 2009; Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155:1318–1331
    [Google Scholar]
  60. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
    [Google Scholar]
  61. Spiro S., Guest J. R. 1987; Regulation and over-expression of the fnr gene of Escherichia coli. J Gen Microbiol 133:3279–3288
    [Google Scholar]
  62. Suzuki K., Babitzke P., Kushner S. R., Romeo T. 2006; Identification of a novel regulatory protein (CsrD) that targets the global regulator RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20:2605–2617
    [Google Scholar]
  63. Tal R., Wong H. C., Calhoon R., Gelfand D., Fear A. L., Volman G., Mayer R., Ross P., Amikan D. other authors 1998; Three cdg operons control cellular turnover of cyclic-di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180:4416–4425
    [Google Scholar]
  64. Tamayo R., Tischler A. D., Camilli A. 2005; The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J Biol Chem 280:33324–33330
    [Google Scholar]
  65. Tanaka A., Takahashi H., Shimizu T. 2007; Critical role of the heme axial ligand, Met95, in locking catalysis of the phosphodiesterase from Escherichia coli ( Ec DOS) toward cyclic diGMP. J Biol Chem 282:21301–21307
    [Google Scholar]
  66. Tischler A. D., Camilli A. 2004; Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53:857–869
    [Google Scholar]
  67. Tischler A. D., Camilli A. 2005; Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73:5873–5882
    [Google Scholar]
  68. Tuckerman J. R., Gonzalez G., Sousa E. H., Wan X., Saito J. A., Alam M., Gilles-Gonzalez M.-A. 2009; An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48:9764–9774
    [Google Scholar]
  69. Unden G., Achebach S., Holighaus G., Tran H.-Q., Wackwitz B., Zeuner Y. 2002; Control of FNR function of Escherichia coli by O2 and reducing conditions. J Mol Microbiol Biotechnol 4:263–268
    [Google Scholar]
  70. Wing H. J., Williams S. M., Busby S. J. W. 1995; Spacing requirements for transcription activation by Escherichia coli FNR protein. J Bacteriol 177:6704–6710
    [Google Scholar]
  71. Xiong J., Kurtz D. M. Jr, Ai J., Sanders-Loehr J. 2000; A hemerythrin-like domain in a bacterial chemotaxis protein. Biochemistry 39:5117–5125
    [Google Scholar]
  72. Yu D., Ellis H. M., Lee E.-C., Jenkins N. A., Copeland N. G., Court D. L. 2000; An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978–5983
    [Google Scholar]
  73. Ziegelhoffer E. C., Kiley P. J. 1995; In vitro analysis of a constitutively active mutant form of the Escherichia coli global transcription factor FNR. J Mol Biol 245:351–361
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037887-0
Loading
/content/journal/micro/10.1099/mic.0.037887-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error