Characterization and inactivation of the membrane-bound polyol dehydrogenase in DSM 7145 reveals a role in -erythritol oxidation Free

Abstract

The growth of DSM 7145 on -erythritol is characterized by two stages: in the first stage, -erythritol is oxidized almost stoichiometrically to -erythrulose according to the Bertrand–Hudson rule. The second phase is distinguished from the first phase by a global metabolic change from membrane-bound -erythritol oxidation to -erythrulose assimilation with concomitant accumulation of acetic acid. The membrane-associated erythritol-oxidizing enzyme was found to be encoded by a gene homologous to known from other species of acetic acid bacteria. Disruption of this gene in the genome of DSM 7145 revealed that the membrane-bound polyol dehydrogenase not only oxidizes -erythritol but also has a broader substrate spectrum which includes C3–C6 polyols and -gluconate and supports growth on these substrates. Cultivation of DSM 7145 on different substrates indicated that expression of the polyol dehydrogenase was not regulated, implying that the production of biomass of to be used as whole-cell biocatalysts in the biotechnological conversion of -erythritol to -erythrulose, which is used as a tanning agent in the cosmetics industry, can be conveniently carried out with glucose as the growth substrate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037598-0
2010-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1890.html?itemId=/content/journal/micro/10.1099/mic.0.037598-0&mimeType=html&fmt=ahah

References

  1. Adachi O., Fujii Y., Ano Y., Moonmangmee D., Toyama H., Shinagawa E., Theeragool G., Lotong N., Matsushita K. 2001; Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes l-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 65:115–125
    [Google Scholar]
  2. Adachi O., Moonmangmee D., Toyama H., Yamada M., Shinagawa E., Matushita K. 2003; New developments in oxidative fermentation. Appl Microbiol Biotechnol 60:643–653
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  4. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795
    [Google Scholar]
  5. Bergmeyer H. U. 1974 Methoden der Enzymatischen Analyse, 3rd edn. Weinheim: Verlag Chemie;
  6. Bonfield J. K., Smith K., Staden R. 1995; A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999
    [Google Scholar]
  7. Bullock W. O., Fernandez J. M., Short J. M. 1987; XL-1 Blue: a high efficiency plasmid DNA transforming recA E. coli strain with beta-galactosidase selection. Biotechniques 5:376–379
    [Google Scholar]
  8. Cozier G. E., Anthony C. 1995; Structure of the quinoprotein glucose dehydrogenase of Escherichia coli modelled on that of methanol dehydrogenase from Methylobacterium extorquens. Biochem J 312:679–685
    [Google Scholar]
  9. Davidson V. L. 2004; Electron transfer in quinoproteins. Arch Biochem Biophys 428:32–40
    [Google Scholar]
  10. De Ley J., Dochy R. 1960; On the localization of oxidase systems in Acetobacter cells. Biochim Biophys Acta 40:277–289
    [Google Scholar]
  11. De Ley J., Stouthamer A. H. 1959; The mechanism and localization of hexanoate metabolism in Acetobacter suboxydans and Acetobacter melanogenum. Biochim Biophys Acta 34:171–183
    [Google Scholar]
  12. De Muynck C., Pereira C. S. S., Naessens M., Parmentier S., Soetaert W., Vandamme E. J. 2007; The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Crit Rev Biotechnol 27:147–171
    [Google Scholar]
  13. El-Mansi E. M. T., Holms W. H. 1989; Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135:2875–2883
    [Google Scholar]
  14. Gay P., Lecoq D., Steinmetz M., Berkelman T., Kado C. I. 1985; Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol 164:918–921
    [Google Scholar]
  15. Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. 1995; The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 Å. Structure 3:177–187
    [Google Scholar]
  16. Gupta A., Verma V., Qazi G. N. 1997; Transposon induced mutation in Gluconobacter oxydans with special reference to its direct-glucose oxidation metabolism. FEMS Microbiol Lett 147:181–188
    [Google Scholar]
  17. Kleckner N., Roth J., Botstein D. 1977; Genetic engineering in vivo using translocatable drug resistance elements: new methods in bacterial genetics. J Mol Biol 116:125–159
    [Google Scholar]
  18. Kondo K., Horinouchi S. 1997; Characterization of the genes encoding the three-component membrane-bound alcohol dehydrogenase from Gluconobacter suboxydans and their expression in Acetobacter pasteurianus. Appl Environ Microbiol 63:1131–1138
    [Google Scholar]
  19. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. I., Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  20. Kulhanek M. 1989; Microbial dehydrogenations of monosaccharides. Adv Appl Microbiol 34:141–181
    [Google Scholar]
  21. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal_x version 2. Bioinformatics 23:2947–2948
    [Google Scholar]
  22. Mason L. M., Claus G. W. 1989; Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: G. oxydans (Henneberg 1897) De Ley 1961, G. frateurii sp. nov., and G. asaii sp. nov. Int J Syst Bacteriol 39:174–184
    [Google Scholar]
  23. Matsushita K., Shinagawa E., Adachi O., Ameyama M. 1987; Purification and characterization of cytochrome o-type oxidase from Gluconobacter suboxydans. Biochim Biophys Acta 394:305–312
    [Google Scholar]
  24. Matsushita K., Toyama H., Adachi O. 1994; Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301
    [Google Scholar]
  25. Matsushita K., Fujii Y., Ano Y., Toyama H., Shinjoh M., Tomiyama N., Miyazaki N., Sugisawa T., Hoshino T. other authors 2003; 5-Keto-d-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966
    [Google Scholar]
  26. Miyazaki T., Tomiyama N., Shinjoh M., Hoshino T. 2002; Molecular cloning and functional expression of d-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270
    [Google Scholar]
  27. Moonmangmee D., Adachi O., Shinagawa E., Toyama H., Theeragool G., Lotong N., Matsushita K. 2002; l-Erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 66:307–318
    [Google Scholar]
  28. Pestov N. B., Rydström J. 2007; Purification of recombinant membrane proteins tagged with calmodulin-binding domains by affinity chromatography on calmodulin-agarose: example of nicotinamide nucleotide transhydrogenase. Nat Protoc 2:198–202
    [Google Scholar]
  29. Prust C., Hoffmeister M., Liesegang H., Wiezer A., Fricke W. F., Ehrenreich A., Gottschalk G., Deppenmeier U. 2005; Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning, a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  31. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73
    [Google Scholar]
  32. Schedel M. 2000; Regioselective oxidation of aminosorbitol with Gluconobacter oxydans, a key reaction in the industrial synthesis of 1-deoxynojirimycin. In Biotechnology pp 296–308 Edited by Kelly D. Weinheim: Wiley-VCH;
    [Google Scholar]
  33. Schweiger P., Volland S., Deppenmeier U. 2007; Overproduction and characterization of two distinct aldehyde oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 13:147–155
    [Google Scholar]
  34. Shinjoh M., Tomiyama N., Miyazaki T., Hoshino T. 2002; Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound d-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Biosci Biotechnol Biochem 66:2314–2322
    [Google Scholar]
  35. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  36. Soemphol W., Toyama H., Moonmangmee D., Adachi O., Matsushita K. 2007; l-Sorbose reductase and its transcriptional regulator involved in l-sorbose utilization of Gluconobacter frateurii. J Bacteriol 189:4800–4808
    [Google Scholar]
  37. Tschamber T., Craig C. J., Muller M., Streith J. 1996; Stereoselective synthesis of d,l-erythrose-, and of d,l-1,4-dideoxy-4-aminoerythrose derivatives bearing B lactam at C-4. Tetrahedron 52:6201–6214
    [Google Scholar]
  38. Wach A. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037598-0
Loading
/content/journal/micro/10.1099/mic.0.037598-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed