2,3-Dihydroxypropane-1-sulfonate degraded by JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase Free

Abstract

2,3-Dihydroxypropane-1-sulfonate (DHPS) is a widespread intermediate in plant and algal transformations of sulfoquinovose (SQ) from the plant sulfolipid sulfoquinovosyl diacylglycerol. Further, DHPS is recovered quantitatively during bacterial degradation of SQ by sp. strain ABR11. DHPS is also a putative precursor of sulfolactate in e.g. DSS-3. A bioinformatic approach indicated that some 28 organisms with sequenced genomes might degrade DHPS inducibly via sulfolactate, with three different desulfonative enzymes involved in its degradation in different organisms. The hypothesis for JMP134 (formerly ) involved a seven-gene cluster (Reut_C6093–C6087) comprising a LacI-type transcriptional regulator, HpsR, a major facilitator superfamily uptake system, HpsU, three NAD(P)-coupled DHPS dehydrogenases, HpsNOP, and ()-sulfolactate sulfo-lyase (SuyAB) [EC 4.4.1.24]. HpsOP effected a DHPS-racemase activity, and HpsN oxidized ()-DHPS to ()-sulfolactate. The hypothesis for ISM was similar, but involved a tripartite ATP-independent transport system for DHPS, HpsKLM, and two different desulfonative enzymes, ()-cysteate sulfo-lyase [EC 4.4.1.25] and sulfoacetaldehyde acetyltransferase (Xsc) [EC 2.3.3.15]. Representative organisms were found to grow with DHPS and release sulfate. JMP134 was found to express at least one NAD(P)-coupled DHPS dehydrogenase inducibly, and three different peaks of activity were separated by anion-exchange chromatography. Protein bands (SDS-PAGE) were subjected to peptide-mass fingerprinting, which identified the corresponding genes (). Purified HpsN converted DHPS to sulfolactate. Reverse-transcription PCR confirmed that were transcribed inducibly in strain JMP134, and that and were transcribed in strain ISM. DHPS degradation is widespread and diverse, implying that DHPS is common in marine and terrestrial environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037580-0
2010-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1556.html?itemId=/content/journal/micro/10.1099/mic.0.037580-0&mimeType=html&fmt=ahah

References

  1. Benson A. A. 1963; The plant sulfolipid. Adv Lipid Res 1:387–394
    [Google Scholar]
  2. Benson A. A., Lee R. F. 1972; The sulphoglycolytic pathway in plants. Biochem J 128:29P–30P
    [Google Scholar]
  3. Benson A. A., Shibuya I. 1961; Sulfocarbohydrate metabolism. Fed Proc 20:79
    [Google Scholar]
  4. Biebl H., Tindall B. J., Pukall R., Lunsdorf H., Allgaier M., Wagner-Dobler I. 2006; Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56:821–826
    [Google Scholar]
  5. Busby W. F. 1966; Sulfopropanedial and cysteinolic acid in the diatom. Biochim Biophys Acta 121:160–161
    [Google Scholar]
  6. Cook A. M., Denger K., Smits T. H. M. 2006; Dissimilation of C3-sulfonates. Arch Microbiol 185:83–90
    [Google Scholar]
  7. Denger K., Cook A. M. 2010; Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of ( S)-sulfolactate dehydrogenase. Microbiology 156:967–974
    [Google Scholar]
  8. Denger K., Ruff J., Rein U., Cook A. M. 2001; Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J 357:581–586
    [Google Scholar]
  9. Denger K., Weinitschke S., Hollemeyer K., Cook A. M. 2004; Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:254–258
    [Google Scholar]
  10. Denger K., Smits T. H. M., Cook A. M. 2006; l-Cysteate sulfo-lyase, a widespread, pyridoxal 5′-phosphate-coupled desulfonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem J 394:657–664
    [Google Scholar]
  11. Denger K., Mayer J., Buhmann M., Weinitschke S., Smits T. H. M., Cook A. M. 2009; Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and ( S)-cysteate sulfo-lyase. J Bacteriol 191:5648–5656
    [Google Scholar]
  12. Desomer J., Crespi M., Van Montagu M. 1991; Illegitimate integration of non-replicative vectors in the genome of Rhodococcus fascians upon electrotransformation as an insertional mutagenesis system. Mol Microbiol 5:2115–2124
    [Google Scholar]
  13. Ellis K. J., Morrison J. F. 1982; Buffers of constant ionic strength for studying pH-dependent processes. Methods Enzymol 87:405–426
    [Google Scholar]
  14. Friese H. 1938; über die Reaktion von Schwefelsäure mit ungesättigten Verbindungen (X. Mitteil. über Lignin). Berichte der Deutschen Chemischen Gesellschaft 71:1303–1306
    [Google Scholar]
  15. González J. M., Covert J. S., Whitman W. B., Henriksen J. R., Mayer F., Scharf B., Schmitt R., Buchan A., Fuhrman J. A. other authors 2003; Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 53:1261–1269
    [Google Scholar]
  16. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Pačes V., Cook A. M., Smits T. H. M. 2008; Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  18. Lee R. F., Benson A. A. 1972; The metabolism of glyceryl [35S]sulfoquinovoside by the coral tree, Erythrina crista-galli, and alfalfa, Medicago sativa. Biochim Biophys Acta 261:35–37
    [Google Scholar]
  19. Mayer J., Cook A. M. 2009; Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 191:6052–6058
    [Google Scholar]
  20. Pfennig N. 1978; Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288
    [Google Scholar]
  21. Racker E. 1962; Fructose-6-phosphate phosphoketolase from Acetobacter xylinum. Methods Enzymol 5:276–280
    [Google Scholar]
  22. Rein U., Gueta R., Denger K., Ruff J., Hollemeyer K., Cook A. M. 2005; Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:737–747
    [Google Scholar]
  23. Roy A. B., Hewlins M. J. E., Ellis A. J., Harwood J. L., White G. F. 2003; Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69:6434–6441
    [Google Scholar]
  24. Ruff J., Denger K., Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285
    [Google Scholar]
  25. Schäfer H., McDonald I. R., Nightingale P. D., Murrell J. C. 2005; Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria. Environ Microbiol 7:839–852
    [Google Scholar]
  26. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145
    [Google Scholar]
  27. Shibuya I., Yagi T., Benson A. A. Japanese Society of Plant Physiologists 1963; Sulfonic acids in algae. In Studies on Microalgae and Photosynthetic Bacteria pp 627–636 Edited by Tokyo: University of Tokyo Press;
    [Google Scholar]
  28. Sörbo B. 1987; Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6
    [Google Scholar]
  29. Tholey A., Wittmann C., Kang M. J., Bungert D., Hollemeyer K., Heinzle E. 2002; Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 37:963–973
    [Google Scholar]
  30. Thurnheer T., Köhler T., Cook A. M., Leisinger T. 1986; Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220
    [Google Scholar]
  31. Weinitschke S., Sharma P. I., Stingl U., Cook A. M., Smits T. H. M. 2010; Gene clusters involved in isethionate degradation in terrestrial and marine bacteria. Appl Environ Microbiol 76:618–621
    [Google Scholar]
  32. Weinstein C. L., Griffith O. W. 1988; Cysteinesulfonate and β-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways. J Biol Chem 263:3735–3743
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037580-0
Loading
/content/journal/micro/10.1099/mic.0.037580-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed