1887

Abstract

Signal-mediated interactions between the human opportunistic pathogens and affect virulence traits in both organisms. Phenotypic studies revealed that bacterial supernatant from four strains strongly reduced the ability of to form biofilms on silicone. This was largely a consequence of inhibition of biofilm maturation, a phenomenon also observed with supernatant prepared from non-clinical bacterial species. The effects of supernatant on biofilm formation were not mediated via interference with the yeast–hyphal morphological switch and occurred regardless of the level of homoserine lactone (HSL) produced, indicating that the effect is HSL-independent. A transcriptome analysis to dissect the effects of the supernatants on gene expression in the early stages of biofilm formation identified 238 genes that exhibited reproducible changes in expression in response to all four supernatants. In particular, there was a strong increase in the expression of genes related to drug or toxin efflux and a decrease in expression of genes associated with adhesion and biofilm formation. Furthermore, expression of , which encodes a protein known to inhibit biofilm formation, was significantly increased. Biofilm formation is a key aspect of infections, therefore the capacity of to antagonize this has clear biomedical implications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037549-0
2010-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1476.html?itemId=/content/journal/micro/10.1099/mic.0.037549-0&mimeType=html&fmt=ahah

References

  1. Adams C., Morris-Quinn M., McConnell F., West J., Lucey B., Shortt C., Cryan B., Watson J. B., O'Gara F.. 1998; Epidemiology and clinical impact of Pseudomonas aeruginosa infection in cystic fibrosis using AP-PCR fingerprinting. J Infect37:151–158
    [Google Scholar]
  2. Almeida R. S., Wilson D., Hube B.. 2009; Candida albicans iron acquisition within the host. FEMS Yeast Res9:1000–1012
    [Google Scholar]
  3. Baillie G. S., Douglas L. J.. 1998; Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob Agents Chemother42:2146–2149
    [Google Scholar]
  4. Baillie G. S., Douglas L. J.. 1999; Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol48:671–679
    [Google Scholar]
  5. Bakare N., Rickerts V., Bargon J., Just-Nubling G.. 2003; Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses46:19–23
    [Google Scholar]
  6. Blankenship J. R., Mitchell A. P.. 2006; How to build a biofilm: a fungal perspective. Curr Opin Microbiol9:588–594
    [Google Scholar]
  7. Braun B. R., Head W. S., Wang M. X., Johnson A. D.. 2000; Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics156:31–44
    [Google Scholar]
  8. Braun B. R., Kadosh D., Johnson A. D.. 2001; NRG1, a repressor of filamentous growth in C. albicans is down-regulated during filament induction. EMBO J20:4753–4761
    [Google Scholar]
  9. Cugini C., Calfee M. W., Farrow J. M. III, Morales D. K., Pesci E. C., Hogan D. A.. 2007; Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol65:896–906
    [Google Scholar]
  10. Davies D. G., Marques C. N. H.. 2009; A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol191:1393–1403
    [Google Scholar]
  11. Davis-Hanna A., Piispanen A. E., Stateva L. I., Hogan D. A.. 2008; Farnesol and dodecanol effects on the Candida albicans Ras1–cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol67:47–62
    [Google Scholar]
  12. d'Enfert C.. 2006; Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets7:465–470
    [Google Scholar]
  13. De Sordi L., Mühlschlegel F. A.. 2009; Quorum sensing and fungal–bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res9:990–999
    [Google Scholar]
  14. Ding C., Butler G.. 2007; Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell6:1310–1319
    [Google Scholar]
  15. El-Azizi M. A., Starks S. E., Khardori N.. 2004; Interactions of Candida albicans with other Candida spp. and bacteria in the biofilms. J Appl Microbiol96:1067–1073
    [Google Scholar]
  16. Falagas M. E., Betsi G. I., Athanasiou S.. 2006; Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother58:266–272
    [Google Scholar]
  17. Finnan S., Morrissey J. P., O'Gara F., Boyd E. F.. 2004; Genome diversity of Pseudomonas aeruginosa isolates from cystic fibrosis patients and the hospital environment. J Clin Microbiol42:5783–5792
    [Google Scholar]
  18. Gow N. A., Brown A. J., Odds F. C.. 2002; Fungal morphogenesis and host invasion. Curr Opin Microbiol5:366–371
    [Google Scholar]
  19. Gupta N., Haque A., Mukhopadhyay G., Naryan R. P., Prasad R.. 2005; Interactions between bacteria and Candida in the burn wound. Burns31:375–378
    [Google Scholar]
  20. Hameed S., Prasad T., Banerjee D., Chandra A., Mukhopadhyay C. K., Goswami S. K., Lattif A. A., Chandra J., Mukherjee P. K.. other authors 2008; Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. FEMS Yeast Res8:744–755
    [Google Scholar]
  21. Hawser S. P., Baillie G. S., Douglas L. J.. 1998; Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol47:253–256
    [Google Scholar]
  22. Hogan D. A., Kolter R.. 2002; PseudomonasCandida interactions: an ecological role for virulence factors. Science296:2229–2232
    [Google Scholar]
  23. Hogan D. A., Vik A., Kolter R.. 2004; A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol54:1212–1223
    [Google Scholar]
  24. Hornby J. M., Jensen E. C., Lisec A. D., Tasto J. J., Jahnke B., Shoemaker R., Dussault P., Nickerson K. W.. 2001; Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol67:2982–2992
    [Google Scholar]
  25. Hoyer L. L., Green C. B., Oh S. H., Zhao X.. 2008; Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol46:1–15
    [Google Scholar]
  26. Kerr J. R.. 1994; Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol32:525–527
    [Google Scholar]
  27. Kojic E. M., Darouiche R. O.. 2004; Candida infections of medical devices. Clin Microbiol Rev17:255–267
    [Google Scholar]
  28. Kruppa M., Krom B. P., Chauhan N., Bambach A. V., Cihlar R. L., Calderone R. A.. 2004; The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell3:1062–1065
    [Google Scholar]
  29. McAlester G., O'Gara F., Morrissey J. P.. 2008; Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol57:563–569
    [Google Scholar]
  30. Nobile C. J., Mitchell A. P.. 2006; Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol8:1382–1391
    [Google Scholar]
  31. Nobile C. J., Andes D. R., Nett J. E., Smith F. J., Yue F., Phan Q. T., Edwards J. E., Filler S. G., Mitchell A. P.. 2006; Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog2:e63
    [Google Scholar]
  32. Nseir S., Jozefowicz E., Cavestri B., Sendid B., Di Pompeo C., Dewavrin F., Favory R., Roussel-Delvallez M., Durocher A.. 2007; Impact of antifungal treatment on Candida–Pseudomonas interaction: a preliminary retrospective case-control study. Intensive Care Med33:137–141
    [Google Scholar]
  33. Osset J., Garcia E., Bartolome R. M., Andreu A.. 2001; Role of Lactobacillus as protector against vaginal candidiasis. Med Clin (Barc117:285–288
    [Google Scholar]
  34. Ramage G., Vande Walle K., Wickes B. L., Lopez-Ribot J. L.. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother45:2475–2479
    [Google Scholar]
  35. Ramage G., Saville S. P., Wickes B. L., Lopez-Ribot J. L.. 2002a; Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol68:5459–5463
    [Google Scholar]
  36. Ramage G., VandeWalle K., Lopez-Ribot J. L., Wickes B. L.. 2002b; The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol Lett214:95–100
    [Google Scholar]
  37. Ramage G., Wickes B. L., Lopez-Ribot J. L.. 2007; Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA. Mycopathologia164:301–306
    [Google Scholar]
  38. Romano J. D., Kolter R.. 2005; PseudomonasSaccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J Bacteriol187:940–948
    [Google Scholar]
  39. Shiner E. K., Rumbaugh K. P., Williams S. C.. 2005; Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol Rev29:935–947
    [Google Scholar]
  40. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I.. 1998; Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun66:2521–2528
    [Google Scholar]
  41. Strus M., Brzychczy-Wloch M., Kucharska A., Gosiewski T., Heczko P. B.. 2005a; Inhibitory activity of vaginal Lactobacillus bacteria on yeasts causing vulvovaginal candidiasis. Med Dosw Mikrobiol57:7–17
    [Google Scholar]
  42. Strus M., Kucharska A., Kukla G., Brzychczy-Wloch M., Maresz K., Heczko P. B.. 2005b; The in vitro activity of vaginal Lactobacillus with probiotic properties against Candida. Infect Dis Obstet Gynecol13:69–75
    [Google Scholar]
  43. Tampakakis E., Peleg A. Y., Mylonakis E.. 2009; Interaction of Candida albicans with an intestinal pathogen Salmonella enterica serovar Typhimurium. Eukaryot Cell8:732–737
    [Google Scholar]
  44. Thein Z. M., Samaranayake Y. H., Samaranayake L. P.. 2006; Effect of oral bacteria on growth and survival of Candida albicans biofilms. Arch Oral Biol51:672–680
    [Google Scholar]
  45. Trautner B. W., Hull R. A., Darouiche R. O.. 2003; Escherichia coli 83972 inhibits catheter adherence by a broad spectrum of uropathogens. Urology61:1059–1062
    [Google Scholar]
  46. Tusher V. G., Tibshirani R., Chu G.. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A98:5116–5121
    [Google Scholar]
  47. Valenza G., Tappe D., Turnwald D., Frosch M., König C., Hebestreit H., Abele-Horn M.. 2008; Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros7:123–127
    [Google Scholar]
  48. Wargo M. J., Hogan D. A.. 2006; Fungal–bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol9:359–364
    [Google Scholar]
  49. Whiteway M., Oberholzer U.. 2004; Candida morphogenesis and host–pathogen interactions. Curr Opin Microbiol7:350–357
    [Google Scholar]
  50. Yeater K. M., Chandra J., Cheng G., Mukherjee P. K., Zhao X., Rodriguez-Zas S. L., Kwast K. E., Ghannoum M. A., Hoyer L. L.. 2007; Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology153:2373–2385
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037549-0
Loading
/content/journal/micro/10.1099/mic.0.037549-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error