1887

Abstract

Two-component systems usually function as cognate pairs, thereby ensuring an appropriate response to the detected signal. The ability to exclusively phosphorylate a partner protein, often in the presence of many competing homologous substrates, demonstrates a high level of specificity that must derive from the interacting surfaces of the two-component system. Here, we identify positions within the histidine kinases and response regulators of the WalRK and PhoPR two-component systems of that make a major contribution to the specificity of phosphotransfer. Changing the identity of the amino acid at position 11 within the 1 helix of WalK and at position 17 within the 1 helix of PhoP altered discrimination and allowed phosphotransfer to occur with the non-cognate partner. Changing amino acids at additional positions of the WalK kinase increased phosphotransfer, while changes at additional positions in PhoP only had an effect in the presence of the change at position 17. The importance of amino acid identity at these two positions is supported by the fact that the amino acid combinations of Ile and Ser in WalRK, and Leu and Gly in PhoPR, are very highly conserved among orthologues, while modelling indicates that these amino acid pairs are juxtaposed in the WalRK and PhoPR complexes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037515-0
2010-06-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1848.html?itemId=/content/journal/micro/10.1099/mic.0.037515-0&mimeType=html&fmt=ahah

References

  1. Bisicchia, P., Noone, D., Lioliou, E., Howell, A., Quigley, S., Jensen, T., Jarmer, H. & Devine, K. M. ( 2007; ). The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65, 180–200.[CrossRef]
    [Google Scholar]
  2. Bisicchia, P., Lioliou, E., Noone, D., Salzberg, L. I., Botella, E., Hubner, S. & Devine, K. M. ( 2010; ). Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cells. Mol Microbiol 75, 972–989.[CrossRef]
    [Google Scholar]
  3. Casino, P., Rubio, V. & Marina, A. ( 2009; ). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139, 325–336.[CrossRef]
    [Google Scholar]
  4. Derre, I., Rapoport, G. & Msadek, T. ( 2000; ). The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37 °C. Mol Microbiol 38, 335–347.[CrossRef]
    [Google Scholar]
  5. Fabret, C., Fehrer, V. A. & Hoch, J. A. ( 1999; ). Two-component signal transduction in Bacillus subtilis; how one organism sees the world. J Bacteriol 181, 1975–1983.
    [Google Scholar]
  6. Gao, R. & Stock, A. M. ( 2009; ). Biological insights from structures of two-component proteins. Annu Rev Microbiol 63, 133–154.[CrossRef]
    [Google Scholar]
  7. Hoch, J. A. ( 2000; ). Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3, 165–170.[CrossRef]
    [Google Scholar]
  8. Hoch, J. A. & Silhavy, T. ( 1995; ). Two-Component Signal Transduction. Washington, DC: American Society for Microbiology.
  9. Hoch, J. A. & Varughese, K. I. ( 2001; ). Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183, 4941–4949.[CrossRef]
    [Google Scholar]
  10. Howell, A., Dubrac, S., Andersen, K. K., Noone, D., Fert, J., Msadek, T. & Devine, K. ( 2003; ). Genes controlled by the essential WalK/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 49, 1639–1655.[CrossRef]
    [Google Scholar]
  11. Howell, A., Dubrac, S., Noone, D., Varughese, K. I. & Devine, K. ( 2006; ). Interactions between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the non-cognate YycF response regulator upon phosphate limitation. Mol Microbiol 59, 1199–1215.[CrossRef]
    [Google Scholar]
  12. Hulett, F. M. ( 1996; ). The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol 19, 933–939.[CrossRef]
    [Google Scholar]
  13. Jiang, M., Tzeng, Y. L., Feher, V. A., Perego, M. & Hoch, J. A. ( 1999; ). Alanine mutants of the Spo0F response regulator modifying specificity for sensor kinases in sporulation initiation. Mol Microbiol 33, 389–395.[CrossRef]
    [Google Scholar]
  14. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A. M., Alloni, G., Azevedo, V., Bertero, M. G., Bessières, P., Bolotin, A. & other authors ( 1997; ). The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256.[CrossRef]
    [Google Scholar]
  15. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–688.[CrossRef]
    [Google Scholar]
  16. Madhusudan, Zapf, J., Whiteley, J. M., Hoch, J. A., Xuong, N. H. & Varughese, K. I. ( 1996; ). Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Structure 4, 679–690.[CrossRef]
    [Google Scholar]
  17. McCleary, W. R. & Stock, J. B. ( 1994; ). Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269, 31567–31572.
    [Google Scholar]
  18. McCleary, W. R., Stock, J. B. & Ninfa, A. J. ( 1993; ). Is acetyl phosphate a global signal in Escherichia coli? J Bacteriol 175, 2793–2798.
    [Google Scholar]
  19. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Msadek, T., Kunst, F., Henner, D., Klier, A., Rapoport, G. & Dedonder, R. ( 1990; ). Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172, 824–834.
    [Google Scholar]
  21. Mukhopadhyay, D. & Varughese, K. I. ( 2005; ). A computational analysis on the specificity of interactions between histidine kinases and response regulators. J Biomol Struct Dyn 22, 555–562.[CrossRef]
    [Google Scholar]
  22. Schug, A., Weight, M., Onuchic, J. N., Hwa, T. & Szurmant, H. ( 2009; ). High-resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci U S A 106, 22,124–22,129.[CrossRef]
    [Google Scholar]
  23. Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. & Laub, M. T. ( 2008; ). Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054.[CrossRef]
    [Google Scholar]
  24. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  25. Sun, G., Birkey, S. M. & Hulett, F. M. ( 1996; ). Three two-component signal-transduction systems interact for Pho regulation in Bacillus subtilis. Mol Microbiol 19, 941–948.[CrossRef]
    [Google Scholar]
  26. Szurmant, H., Bobay, B. G., White, R. A., Sullivan, D. M., Thompson, R. J., Hwa, T., Hoch, J. A. & Cavanagh, J. ( 2008; ). Co-evolving motions at protein–protein interfaces of two-component signaling systems identified by covariance analysis. Biochemistry 47, 7782–7784.[CrossRef]
    [Google Scholar]
  27. Tzeng, Y. L. & Hoch, J. A. ( 1997; ). Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis. J Mol Biol 272, 200–212.[CrossRef]
    [Google Scholar]
  28. Varughese, K. I. ( 2002; ). Molecular recognition of bacterial phosphorelay proteins. Curr Opin Microbiol 5, 142–148.[CrossRef]
    [Google Scholar]
  29. Varughese, K. I., Madhusudan, Zhou, X. Z., Whiteley, J. M. & Hoch, J. A. ( 1998; ). Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Mol Cell 2, 485–493.[CrossRef]
    [Google Scholar]
  30. Weigt, M., White, R. A., Szurmant, H., Hoch, J. A. & Hwa, T. ( 2008; ). Identification of direct residue contacts in protein–protein interaction by message passing. Proc Natl Acad Sci U S A 106, 67–72.
    [Google Scholar]
  31. Yamada, S., Sugimoto, H., Kobayashi, M., Ohno, A., Nakamura, H. & Shiro, Y. ( 2009; ). Structure of PAS-linked histidine kinase and the response regulator complex. Structure 17, 1333–1344.[CrossRef]
    [Google Scholar]
  32. Zapf, J., Sen, U., Madhusudan, Hoch, J. A. & Varughese, K. I. ( 2000; ). A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8, 851–862.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037515-0
Loading
/content/journal/micro/10.1099/mic.0.037515-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error