1887

Abstract

The degradation of many structurally diverse aromatic compounds in is accomplished by the -ketoadipate pathway. In addition to specific induction of expression by certain aromatic compounds, this pathway is regulated by complex mechanisms at multiple levels, which are the topic of this study. Multiple operons feeding into the -ketoadipate pathway are controlled by carbon catabolite repression (CCR) caused by succinate plus acetate. The pathways under study enable the catabolism of benzoate (), catechol (), ,muconate (,,,,,), vanillate (), hydroxycinnamates (), dicarboxylates (), salicylate (), anthranilate () and benzyl esters (). For analysis of CCR at the transcriptional level a luciferase reporter gene cassette was introduced into the operons. The Crc (atabolite epression ontrol) protein is involved in repression of all operons (except for ), as demonstrated by the analysis of respective strains. In addition, cross-regulation was demonstrated for the ,, and operons. The presence of protocatechuate caused transcriptional repression of the ,- and -encoded funnelling pathways (vertical regulation). Thus the results presented extend the understanding both of CCR and of the effects of Crc for all aromatic degradative pathways of and increase the number of operons known to be controlled by two additional mechanisms, cross-regulation and vertical regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037424-0
2010-05-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1313.html?itemId=/content/journal/micro/10.1099/mic.0.037424-0&mimeType=html&fmt=ahah

References

  1. Alting-Mees, M. A. & Short, J. M. ( 1989; ). pBluescript II: gene mapping vectors. Nucleic Acids Res 17, 9494 [CrossRef]
    [Google Scholar]
  2. Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S. & other authors ( 2004; ). Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium. Nucleic Acids Res 32, 5766–5779.[CrossRef]
    [Google Scholar]
  3. Brzostowicz, P. C., Reams, A. B., Clark, T. J. & Neidle, E. L. ( 2003; ). Transcriptional cross-regulation of the catechol and protocatechuate branches of the β-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Appl Environ Microbiol 69, 1598–1606.[CrossRef]
    [Google Scholar]
  4. Cánovas, J. L. & Stanier, R. Y. ( 1967; ). Regulation of the enzymes of the β-ketoadipate pathway in Moraxella calcoacetica. Eur J Biochem 1, 289–300.[CrossRef]
    [Google Scholar]
  5. Craven, S. H., Ezezika, O. C., Momany, C. & Neidle, E. L. ( 2008; ). LysR homologs in Acinetobacter: insights into a diverse and prevalent family of transcriptional regulators. In Acinetobacter Molecular Biology, 1st edn, pp. 163–202. Edited by U. C. Gerischer. Norwich, UK: Caister Academic Press.
  6. D'Argenio, D. A., Segura, A., Coco, W. M., Bunz, P. V. & Ornston, L. N. ( 1999; ). The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J Bacteriol 181, 3505–3515.
    [Google Scholar]
  7. Dal, S., Steiner, I. & Gerischer, U. ( 2002; ). Multiple operons connected with catabolism of aromatic compounds in Acinetobacter sp. strain ADP1 are under carbon catabolite repression. J Mol Microbiol Biotechnol 4, 389–404.
    [Google Scholar]
  8. Dal, S., Trautwein, G. & Gerischer, U. ( 2005; ). Transcriptional organization of genes for protocatechuate and quinate degradation from Acinetobacter sp. strain ADP1. Appl Environ Microbiol 71, 1025–1034.[CrossRef]
    [Google Scholar]
  9. Fischer, R., Bleichrodt, F. S. & Gerischer, U. C. ( 2008; ). Aromatic degradative pathways in Acinetobacter baylyi underlie carbon catabolite repression. Microbiology 154, 3095–3103.[CrossRef]
    [Google Scholar]
  10. Gerischer, U. C. ( 2008; ). Acinetobacter Molecular Biology, 1st edn. Norwich, UK: Caister Academic Press.
  11. Gerischer, U., Segura, A. & Ornston, L. N. ( 1998; ). PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. J Bacteriol 180, 1512–1524.
    [Google Scholar]
  12. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  13. Harwood, C. S. & Parales, R. E. ( 1996; ). The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50, 553–590.[CrossRef]
    [Google Scholar]
  14. Juni, E. & Janik, A. ( 1969; ). Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol 98, 281–288.
    [Google Scholar]
  15. Morales, G., Linares, J. F., Beloso, A., Albar, J. P., Martinez, J. L. & Rojo, F. ( 2004; ). The Pseudomonas putida crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J Bacteriol 186, 1337–1344.[CrossRef]
    [Google Scholar]
  16. Moreno, R. & Rojo, F. ( 2008; ). The target for the Pseudomonas putida crc global regulator in the benzoate degradation pathway is the BenR transcriptional regulator. J Bacteriol 190, 1539–1545.[CrossRef]
    [Google Scholar]
  17. Moreno, R., Ruiz-Manzano, A., Yuste, L. & Rojo, F. ( 2007; ). The Pseudomonas putida crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol 64, 665–675.[CrossRef]
    [Google Scholar]
  18. Moreno, R., Martínez-Gomariz, M., Yuste, L., Gil, C. & Rojo, F. ( 2009; ). The Pseudomonas putida crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9, 2910–2928.[CrossRef]
    [Google Scholar]
  19. Podbielski, A., Woischnik, M., Leonard, B. A. & Schmidt, K. H. ( 1999; ). Characterization of nra, a global negative regulator gene in group A streptococci. Mol Microbiol 31, 1051–1064.[CrossRef]
    [Google Scholar]
  20. Siehler, S. Y., Dal, S., Fischer, R., Patz, P. & Gerischer, U. ( 2007; ). Multiple-level regulation of genes for protocatechuate degradation in Acinetobacter baylyi includes cross-regulation. Appl Environ Microbiol 73, 232–242.[CrossRef]
    [Google Scholar]
  21. Trautwein, G. & Gerischer, U. ( 2001; ). Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol 183, 873–881.[CrossRef]
    [Google Scholar]
  22. Tresguerres, M. E. F., DeTorrontequi, G., Ingledew, W. M. & Cánovas, J. L. ( 1970; ). Regulation of the enzymes of the β-ketoadipate pathway in Moraxella. Control of quinate oxidation by protocatechuate. Eur J Biochem 14, 445–450.[CrossRef]
    [Google Scholar]
  23. Vaneechoutte, M., Young, D. M., Ornston, L. N., De Baere, T., Nemec, A., Van Der Reijden, T., Carr, E., Tjernberg, I. & Dijkshoorn, L. ( 2006; ). Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl Environ Microbiol 72, 932–936.[CrossRef]
    [Google Scholar]
  24. Williams, P. A. & Kay, C. M. ( 2008; ). The catabolism of aromatic compounds by Acinetobacter. In Acinetobacter Molecular Biology, 1st edn, pp. 99–118. Edited by U. C. Gerischer. Norwich, UK: Caister Academic Press.
  25. Wolff, J. A., MacGregor, C. H., Eisenberg, R. C. & Phibbs, P. V., Jr ( 1991; ). Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. J Bacteriol 173, 4700–4706.
    [Google Scholar]
  26. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  27. Young, D. M., Parke, D. & Ornston, L. N. ( 2005; ). Opportunities for genetic investigation afforded by Acinetobacter baylyi, a nutritionally versatile bacterial species that is highly competent for natural transformation. Annu Rev Microbiol 59, 519–551.[CrossRef]
    [Google Scholar]
  28. Yuste, L. & Rojo, F. ( 2001; ). Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway. J Bacteriol 183, 6197–6206.[CrossRef]
    [Google Scholar]
  29. Zimmermann, T., Sorg, T., Siehler, S. Y. & Gerischer, U. ( 2009; ). Role of Acinetobacter baylyi crc in catabolite repression of enzymes for aromatic compound catabolism. J Bacteriol 191, 2834–2842.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037424-0
Loading
/content/journal/micro/10.1099/mic.0.037424-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error