1887

Abstract

In sp. PCC 7942, PipX forms complexes with P, a protein found in all three domains of life as an integrator of signals of the nitrogen and carbon balance, and with the cyanobacterial nitrogen regulator NtcA. We recently showed that previous inactivation of facilitates subsequent inactivation of the gene. Here, we show that the three spontaneous point mutations , and initially found in different strains, are indeed suppressor mutations. When these mutations were reconstructed in the wild-type background, the gene could be efficiently inactivated. Furthermore, the point mutations have different effects on PipX levels, coactivation of NtcA-dependent genes and protein–protein interactions. Further support for an role of PipX–P complexes is provided by interaction analysis with the -generated P protein, a P derivative unable to interact with its regulatory target -acetyl--glutamate kinase, but which retains the ability to bind to PipX. The implications of these results are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037309-0
2010-05-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1517.html?itemId=/content/journal/micro/10.1099/mic.0.037309-0&mimeType=html&fmt=ahah

References

  1. Aldehni, M. F. & Forchhammer, K. ( 2006; ). Analysis of a non-canonical NtcA-dependent promoter in Synechococcus elongatus and its regulation by NtcA and PII. Arch Microbiol 184, 378–386.[CrossRef]
    [Google Scholar]
  2. Aldehni, M. F., Sauer, J., Spielhaupter, C., Schmid, R. & Forchhammer, K. ( 2003; ). Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185, 2582–2591.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R., Kingston, R. E. Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1999; ). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology. New York, NY: Wiley.
  4. Bartel, P., Chien, C. T., Sternglanz, R. & Fields, S. ( 1993; ). Elimination of false-positives that arise in using the two-hybrid system. Biotechniques 14, 920–924.
    [Google Scholar]
  5. Burillo, S., Luque, I., Fuentes, I. & Contreras, A. ( 2004; ). Interactions between the nitrogen signal transduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis. J Bacteriol 186, 3346–3354.[CrossRef]
    [Google Scholar]
  6. Chen, Y. M., Ferrar, T. S., Lohmeir-Vogel, E., Morrice, N., Mizuno, Y., Berenger, B., Ng, K. K., Muench, D. G. & Moorhead, G. B. ( 2006; ). The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J Biol Chem 281, 5726–5733.
    [Google Scholar]
  7. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. ( 2004; ). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.[CrossRef]
    [Google Scholar]
  8. Elhai, J. & Wolk, C. P. ( 1988; ). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68, 119–138.[CrossRef]
    [Google Scholar]
  9. Espinosa, J., Forchhammer, K., Burillo, S. & Contreras, A. ( 2006; ). Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61, 457–469.[CrossRef]
    [Google Scholar]
  10. Espinosa, J., Forchhammer, K. & Contreras, A. ( 2007; ). Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153, 711–718.[CrossRef]
    [Google Scholar]
  11. Espinosa, J., Castells, M. A., Forchhammer, K. & Contreras, A. ( 2008; ). Regulatory interactions involved in nitrogen signalling in cyanobacteria: partner swapping and role of PipX–PII complexes in Synechococcus sp. PCC 7942. In Biological Nitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture, pp. 361–362. Edited by F. D. Dakora, S. B. M. Chimphango, A. J. Valentine, C. Elmerich & W. E. Newton. Dordrect, The Netherlands: Springer.
  12. Espinosa, J., Castells, M. A., Laichoubi, K. B. & Contreras, A. ( 2009; ). Mutations at pipX suppress lethality of PII-deficient mutants of Synechococcus elongatus PCC 7942. J Bacteriol 191, 4863–4869.[CrossRef]
    [Google Scholar]
  13. Forchhammer, K. ( 2004; ). Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28, 319–333.[CrossRef]
    [Google Scholar]
  14. Forchhammer, K. ( 2008; ). PII signal transducers: novel functional and structural insights. Trends Microbiol 16, 65–72.[CrossRef]
    [Google Scholar]
  15. Golden, S. S. & Sherman, L. A. ( 1984; ). Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol 158, 36–42.
    [Google Scholar]
  16. Hanahan, D. ( 1985; ). Techniques for transformation of Escherichia coli. In DNA Cloning, pp. 109–135. Edited by D. M. Glover. Oxford, UK: IRL Press.
  17. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. ( 1993; ). The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816.[CrossRef]
    [Google Scholar]
  18. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  19. Hisbergues, M., Jeanjean, R., Joset, F., Tandeau de Marsac, N. & Bedu, S. ( 1999; ). Protein PII regulates both inorganic carbon and nitrate uptake and is modified by a redox signal in Synechocystis PCC 6803. FEBS Lett 463, 216–220.[CrossRef]
    [Google Scholar]
  20. James, P., Halladay, J. & Craig, E. A. ( 1996; ). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436.
    [Google Scholar]
  21. Kloft, N. & Forchhammer, K. ( 2005; ). Signal transduction protein PII phosphatase PphA is required for light-dependent control of nitrate utilization in Synechocystis sp. strain PCC 6803. J Bacteriol 187, 6683–6690.[CrossRef]
    [Google Scholar]
  22. Kolonin, M. G., Zhong, J. & Finley, R. L. ( 2000; ). Interaction mating methods in two-hybrid systems. Methods Enzymol 328, 26–46.
    [Google Scholar]
  23. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A. & other authors ( 2007; ). clustal w and clustal_x version 2.0. Bioinformatics 23, 2947–2948.[CrossRef]
    [Google Scholar]
  24. Laurent, S., Chen, H., Bedu, S., Ziarelli, F., Peng, L. & Zhang, C. C. ( 2005; ). Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102, 9907–9912.[CrossRef]
    [Google Scholar]
  25. Lee, H. M., Flores, E., Forchhammer, K., Herrero, A. & Tandeau De Marsac, N. ( 2000; ). Phosphorylation of the signal transducer PII protein and an additional effector are required for the PII-mediated regulation of nitrate and nitrite uptake in the Cyanobacterium synechococcus sp. PCC 7942. Eur J Biochem 267, 591–600.[CrossRef]
    [Google Scholar]
  26. Leigh, J. A. & Dodsworth, J. A. ( 2007; ). Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61, 349–377.[CrossRef]
    [Google Scholar]
  27. Llacer, J. L., Contreras, A., Forchhammer, K., Marco-Marin, C., Gil-Ortiz, F., Maldonado, R., Fita, I. & Rubio, V. ( 2007; ). The crystal structure of the complex of PII and acetylglutamate kinase reveals how PII controls the storage of nitrogen as arginine. Proc Natl Acad Sci U S A 104, 17644–17649.[CrossRef]
    [Google Scholar]
  28. Luque, I., Zabulon, G., Contreras, A. & Houmard, J. ( 2001; ). Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41, 937–947.
    [Google Scholar]
  29. Maheswaran, M., Urbanke, C. & Forchhammer, K. ( 2004; ). Complex formation and catalytic activation by the PII signaling protein of N-acetyl-l-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 279, 55202–55210.[CrossRef]
    [Google Scholar]
  30. Muro-Pastor, M. I., Reyes, J. C. & Florencio, F. J. ( 2001; ). Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276, 38320–38328.
    [Google Scholar]
  31. Muro-Pastor, M. I., Reyes, J. C. & Florencio, F. J. ( 2005; ). Ammonium assimilation in cyanobacteria. Photosynth Res 83, 135–150.[CrossRef]
    [Google Scholar]
  32. Osanai, T., Sato, S., Tabata, S. & Tanaka, K. ( 2005; ). Identification of PamA as a PII-binding membrane protein important in nitrogen-related and sugar-catabolic gene expression in Synechocystis sp. PCC 6803. J Biol Chem 280, 34684–34690.[CrossRef]
    [Google Scholar]
  33. Ruiz, D., Salinas, P., Lopes-Redondo, M. L., Cayuela, M. L., Marina, A. & Contreras, A. ( 2008; ). Phosphorylation-independent activation of the atypical response regulator NblR. Microbiology 154, 3002–3015.[CrossRef]
    [Google Scholar]
  34. Salinas, P., Ruiz, D., Cantos, R., Lopez-Redondo, M. L., Marina, A. & Contreras, A. ( 2007; ). The regulatory factor SipA provides a link between NblS and NblR signal transduction pathways in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 66, 1607–1619.
    [Google Scholar]
  35. Sauer, J., Dirmeier, U. & Forchhammer, K. ( 2000; ). The Synechococcus strain PCC 7942 glnN product (glutamine synthetase III) helps recovery from prolonged nitrogen chlorosis. J Bacteriol 182, 5615–5619.[CrossRef]
    [Google Scholar]
  36. Sugiyama, K., Hayakawa, T., Kudo, T., Ito, T. & Yamaya, T. ( 2004; ). Interaction of N-acetylglutamate kinase with a PII-like protein in rice. Plant Cell Physiol 45, 1768–1778.[CrossRef]
    [Google Scholar]
  37. Takatani, N., Kobayashi, M., Maeda, S. & Omata, T. ( 2006; ). Regulation of nitrate reductase by non-modifiable derivatives of PII in the cells of Synechococcus elongatus strain PCC 7942. Plant Cell Physiol 47, 1182–1186.[CrossRef]
    [Google Scholar]
  38. Tanigawa, R., Shirokane, M., Maeda Si, S., Omata, T., Tanaka, K. & Takahashi, H. ( 2002; ). Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci U S A 99, 4251–4255.[CrossRef]
    [Google Scholar]
  39. Vazquez-Bermudez, M. F., Herrero, A. & Flores, E. ( 2002; ). 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett 512, 71–74.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037309-0
Loading
/content/journal/micro/10.1099/mic.0.037309-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error