1887

Abstract

The hindgut of wood-feeding lower termites is densely colonized by a multitude of symbiotic micro-organisms. While it is well established that the eukaryotic flagellates play a major role in the degradation of lignocellulose, much less is known about the identity and function of the prokaryotic symbionts associated with the flagellates. Our ultrastructural investigations of the gut flagellate (from the termite ) revealed a dense colonization of this flagellate by diverse ecto- and endosymbiotic bacteria. Phylogenetic analysis of the small-subunit rRNA gene sequences combined with fluorescence hybridization allowed us to identify and localize the different morphotypes. Furthermore, we could show that harbours two phylotypes of that could be distinguished not only by their small-subunit rRNA gene sequences, but also by differences in their assemblages of bacterial symbionts. Each of the flagellate populations hosted phylogenetically distinct ectosymbionts from the phylum Bacteroidetes, one of them closely related to the ectosymbionts of other termite gut flagellates. A single phylotype of ‘Endomicrobia’ was consistently associated with only one of the host phylotypes, although not all individuals were colonized, corroborating that ‘Endomicrobia’ symbionts do not always cospeciate with their host lineages. Flagellates from both populations were loosely associated with a single phylotype of Spirochaetales attached to their cell surface in varying abundance. Current evidence for the involvement of Bacteroidales and ‘Endomicrobia’ symbionts in the nitrogen metabolism of the host flagellate is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037267-0
2010-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2068.html?itemId=/content/journal/micro/10.1099/mic.0.037267-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Berlanga, M., Paster, B. J. & Guerrero, R. ( 2007; ). Coevolution of symbiotic spirochete diversity in lower termites. Int Microbiol 10, 133–139.
    [Google Scholar]
  3. Brune, A. ( 2006; ). Symbiotic associations between termites and prokaryotes. In The Prokaryotes, Symbiotic Associations, Biotechnology, Applied Microbiology, 3rd edn, vol. 1, pp. 439–474. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  4. Brune, A. & Stingl, U. ( 2005; ). Prokaryotic symbionts of termite gut flagellates: phylogenetic and metabolic implications of a tripartite symbiosis. In Molecular Basis of Symbiosis, pp. 39–60. Edited by J. Overmann. Berlin: Springer.
  5. Cleveland, L. R. ( 1926; ). Symbiosis among animals with special reference to termites and their intestinal flagellates. Q Rev Biol 1, 51–64.[CrossRef]
    [Google Scholar]
  6. Cleveland, L. R. & Grimstone, A. V. ( 1964; ). The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc R Soc Lond B Biol Sci 159, 668–686.[CrossRef]
    [Google Scholar]
  7. Desai, M. S., Strassert, J. F. H., Meuser, K., Hertel, H., Ikeda-Ohtsubo, W., Radek, R. & Brune, A. ( 2009; ). Strict cospeciation of devescovinid flagellates and Bacteroidales ectosymbionts in the gut of dry-wood termites (Kalotermitidae). Environ Microbiol Epub ahead of print
    [Google Scholar]
  8. Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. ( 1989; ). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17, 7843–7853.[CrossRef]
    [Google Scholar]
  9. Fenchel, T. & Ramsing, N. B. ( 1992; ). Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch Microbiol 158, 394–397.
    [Google Scholar]
  10. Fuchs, B. M., Glöckner, F. O., Wulf, J. & Amann, R. ( 2000; ). Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66, 3603–3607.[CrossRef]
    [Google Scholar]
  11. Geissinger, O., Herlemann, D. P. R., Mörschel, E., Maier, U. G. & Brune, A. ( 2009; ). The ultramicrobacterium “Elusimicrobium minutum” gen. nov., sp. nov., the first cultivated representative of the Termite Group 1 phylum. Appl Environ Microbiol 75, 2831–2840.[CrossRef]
    [Google Scholar]
  12. Gold, K. & Pollinger, U. ( 1971; ). Occurrence of endosymbiotic bacteria in marine dinoflagellates. J Phycol 7, 264–265.
    [Google Scholar]
  13. Hongoh, Y., Sato, T., Dolan, M. F., Noda, S., Ui, S., Kudo, T. & Ohkuma, M. ( 2007a; ). The motility symbiont of the termite gut flagellate Caduceia versatilis is a member of the “Synergistes” group. Appl Environ Microbiol 73, 6270–6276.[CrossRef]
    [Google Scholar]
  14. Hongoh, Y., Sato, T., Noda, S., Ui, S., Kudo, T. & Ohkuma, M. ( 2007b; ). Candidatus Symbiothrix dinenymphae: bristle-like Bacteroidales ectosymbionts of termite gut protists. Environ Microbiol 9, 2631–2635.[CrossRef]
    [Google Scholar]
  15. Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Taylor, T. D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M. & Ohkuma, M. ( 2008a; ). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105, 5555–5560.[CrossRef]
    [Google Scholar]
  16. Hongoh, Y., Sharma, V. K., Prakash, T., Noda, S., Toh, H., Taylor, T. D., Kudo, T., Sakaki, Y., Toyoda, A. & other authors ( 2008b; ). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322, 1108–1109.[CrossRef]
    [Google Scholar]
  17. Hungate, R. E. ( 1955; ). Mutualistic intestinal protozoa. In Biochemistry and Physiology of Protozoa, vol. 2, pp. 159–199. Edited by S. H. Hutner & A. Lwoff. New York: Academic Press.
  18. Ikeda-Ohtsubo, W. ( 2007; ). Endomicrobia in termite guts: symbionts within a symbiont. Phylogeny, cospeciation with host flagellates, and preliminary genome analysis. Dissertation, Philipps-Universität Marburg, Germany.
  19. Ikeda-Ohtsubo, W. & Brune, A. ( 2009; ). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’. Mol Ecol 18, 332–342.[CrossRef]
    [Google Scholar]
  20. Ikeda-Ohtsubo, W., Desai, M., Stingl, U. & Brune, A. ( 2007; ). Phylogenetic diversity of ‘Endomicrobia’ and their specific affiliation with termite gut flagellates. Microbiology 153, 3458–3465.[CrossRef]
    [Google Scholar]
  21. Ikeda-Ohtsubo, W., Faivre, N. & Brune, A. ( 2010; ). Putatively free-living “Endomicrobia” – ancestors of the intracellular symbionts of termite gut flagellates? Environ Microbiol Rep
    [Google Scholar]
  22. Inoue, T., Kitade, O., Yoshimura, T. & Yamaoka, I. ( 2000; ). Symbiotic associations with protists. In Termites: Evolution, Sociality, Symbioses, Ecology, pp. 275–288. Edited by T. Abe, D. E. Bignell & M. Higashi. Dordrecht: Kluwer.
  23. Kirby, H. ( 1964; ). Organisms living on and in protozoa. In Protozoa in Biological Research, pp. 1009–1113. Edited by G. N. Calkins & F. M. Summers. New York: Hafner Publishing Co.
  24. Lilburn, T. G., Schmidt, T. M. & Breznak, J. A. ( 1999; ). Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1, 331–345.[CrossRef]
    [Google Scholar]
  25. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). ARB: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  26. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K.-H. ( 1996; ). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106.[CrossRef]
    [Google Scholar]
  27. Noda, S., Ohkuma, M., Yamada, A., Hongoh, Y. & Kudo, T. ( 2003; ). Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69, 625–633.[CrossRef]
    [Google Scholar]
  28. Noda, S., Inoue, T., Hongoh, Y., Kawai, M., Nalepa, C. A., Vongkaluang, C., Kudo, T. & Ohkuma, M. ( 2006a; ). Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8, 11–20.[CrossRef]
    [Google Scholar]
  29. Noda, S., Kawai, M., Nakajima, H., Kudo, T. & Ohkuma, M. ( 2006b; ). Identification and in situ detection of two lineages of Bacteroidales ectosymbionts associated with a termite gut protist, Oxymonas sp. Microbes Environ 20, 16–22.
    [Google Scholar]
  30. Noda, S., Kitade, O., Inoue, T., Kawai, M., Kanuka, M., Hiroshima, K., Hongoh, Y., Constantino, R., Uys, V. & other authors ( 2007; ). Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16, 1257–1266.[CrossRef]
    [Google Scholar]
  31. Noda, S., Hongoh, Y., Sato, T. & Ohkuma, M. ( 2009; ). Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites. BMC Evol Biol 9, 158 [CrossRef]
    [Google Scholar]
  32. Ohkuma, M. ( 2008; ). Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16, 345–352.[CrossRef]
    [Google Scholar]
  33. Ohkuma, M., Ohtoko, K., Grunau, C., Moriya, S. & Kudo, T. ( 1998; ). Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45, 439–444.[CrossRef]
    [Google Scholar]
  34. Ohkuma, M., Iida, T. & Kudo, T. ( 1999; ). Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181, 123–129.[CrossRef]
    [Google Scholar]
  35. Ohkuma, M., Noda, S., Hongoh, Y. & Kudo, T. ( 2002; ). Diverse bacteria related to the Bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. Biosci Biotechnol Biochem 66, 78–84.[CrossRef]
    [Google Scholar]
  36. Ohkuma, M., Sato, T., Noda, S., Ui, S., Kudo, T. & Hongoh, Y. ( 2007; ). The candidate phylum ‘Termite Group 1’ of bacteria: phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol Ecol 60, 467–476.[CrossRef]
    [Google Scholar]
  37. Radek, R. ( 1999; ). Flagellates, bacteria, and fungi associated with termites: diversity and function in nutrition – a review. Ecotropica 5, 183–196.
    [Google Scholar]
  38. Radek, R., Hausmann, K. & Breunig, A. ( 1992; ). Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozool 31, 93–107.
    [Google Scholar]
  39. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  40. Sato, T., Hongoh, Y., Noda, S., Hattori, S., Ui, S. & Ohkuma, M. ( 2009; ). Candidatus Desulfovibrio trichonymphae, a novel intracellular symbiont of the flagellate Trichonympha agilis in termite gut. Environ Microbiol 11, 1007–1015.[CrossRef]
    [Google Scholar]
  41. Schweikert, M. & Meyer, B. ( 2001; ). Characterization of intracellular bacteria in the freshwater dinoflagellate Peridinium cinctum. Protoplasma 217, 177–184.[CrossRef]
    [Google Scholar]
  42. Spurr, A. R. ( 1969; ). A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26, 31–43.[CrossRef]
    [Google Scholar]
  43. Stingl, U. & Brune, A. ( 2003; ). Phylogenetic diversity and whole-cell hybridization of oxymonad flagellates from the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Protist 154, 147–155.[CrossRef]
    [Google Scholar]
  44. Stingl, U., Maass, A., Radek, R. & Brune, A. ( 2004; ). Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘Candidatus Vestibaculum illigatum’. Microbiology 150, 2229–2235.[CrossRef]
    [Google Scholar]
  45. Stingl, U., Radek, R., Yang, H. & Brune, A. ( 2005; ). “Endomicrobia”: cytoplasmic symbionts of termite gut protozoa form a separate phylum of prokaryotes. Appl Environ Microbiol 71, 1473–1479.[CrossRef]
    [Google Scholar]
  46. Strassert, J. F. H., Desai, M. S., Brune, A. & Radek, R. ( 2009; ). The true diversity of devescovinid flagellates in the termite Incisitermes marginipennis. Protist 160, 522–535.[CrossRef]
    [Google Scholar]
  47. Tamm, S. L. ( 1982; ). Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J Cell Biol 94, 697–709.[CrossRef]
    [Google Scholar]
  48. Tanner, A. C. R., Listgarten, M. A., Ebersole, J. L. & Strzempko, M. N. ( 1986; ). Bacteroides forsythus sp. nov., a slow-growing, fusiform, Bacteroides sp. from human oral cavity. Int J Syst Bacteriol 36, 213–221.[CrossRef]
    [Google Scholar]
  49. Trager, W. ( 1934; ). The cultivation of a cellulose-digesting flagellate, Trichomonas termopsidis, and of certain other termite protozoa. Biol Bull 66, 182–190.[CrossRef]
    [Google Scholar]
  50. Wallner, G., Amann, R. & Beisker, W. ( 1993; ). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14, 136–143.[CrossRef]
    [Google Scholar]
  51. Warnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G. & other authors ( 2007; ). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565.[CrossRef]
    [Google Scholar]
  52. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  53. Wenzel, M., Radek, R., Brugerolle, G. & König, H. ( 2003; ). Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39, 11–23.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037267-0
Loading
/content/journal/micro/10.1099/mic.0.037267-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error