1887

Abstract

Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and ‘higher organisms’, can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037143-0
2010-03-01
2021-06-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/609.html?itemId=/content/journal/micro/10.1099/mic.0.037143-0&mimeType=html&fmt=ahah

References

  1. Adamo P., Violante P. 2000; Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256
    [Google Scholar]
  2. Adamo P., Vingiani S., Violante P. 2002; Lichen–rock interactions and bioformation of minerals. Dev Soil Sci 28B:377–391
    [Google Scholar]
  3. Adeyemi A. O., Gadd G. M. 2005; Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281
    [Google Scholar]
  4. Adriaensen K., Vralstad T., Noben J. P., Vangronsveld J., Colpaert J. V. 2005; Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284
    [Google Scholar]
  5. Adriano D. C. 2001 Trace Elements in the Terrestrial Environment: Biogeochemistry, Bioavailability and Risks of Metals, 2nd edn. New York: Springer;
  6. Adriano D. C., Bolan N. S., Vangronsveld J., Wenzel W. W. 2004a; Heavy metals. In Encyclopedia of Soils in the Environment pp 175–182 Edited by Hillel D. Amsterdam: Elsevier;
    [Google Scholar]
  7. Adriano D. C., Wenzel W. W., Vangronsveld J., Bolan N. S. 2004b; Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142
    [Google Scholar]
  8. Altermann W., Böhmer C., Gitter F., Heimann F., Heller I., Läuchli B., Putz C. 2009; Defining biominerals and organominerals: direct and indirect indicators of life. [comment on Perry et al., Sedimentary Geology 201, 157–179]. Sedimentary Geol 213:150–151
    [Google Scholar]
  9. Amores D. R., Warren L. A. 2007; Identifying when microbes biosilicify: the interconnected requirements of acidic pH, colloidal SiO2 and exposed microbial surface. Chem Geol 240:298–312
    [Google Scholar]
  10. Amundson R., Richter D. D., Humphreys G. S., Jobbagy E. G., Gaillardet J. 2007; Coupling between biota and Earth materials in the critical zone. Elements 3:327–332
    [Google Scholar]
  11. Arnott H. J. 1995; Calcium oxalate in fungi. In Calcium Oxalate in Biological Systems pp 73–111 Edited by Khan S. R. Boca Raton, FL: CRC Press;
    [Google Scholar]
  12. Arocena J. M., Glowa K. R., Massicotte H. B., Lavkulich L. 1999; Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir ( Abies lasiocarpa (Hook.) Nutt.) in the AE horizon of a Luvisol. Can J Soil Sci 79:25–35
    [Google Scholar]
  13. Arocena J. M., Zhu L. P., Hall K. 2003; Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau, China. Earth Surf Process Landf 28:1429–1437
    [Google Scholar]
  14. Aubert C., Lojou E., Bianco P., Rousset M., Durand M.-C., Bruschi M., Dolla A. 1998; The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol 64:1308–1312
    [Google Scholar]
  15. Avery S. V. 2001; Metal toxicity in yeast and the role of oxidative stress. Adv Appl Microbiol 49:111–142
    [Google Scholar]
  16. Bae W., Chen W., Mulchandani A., Mehra R. 2000; Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–523
    [Google Scholar]
  17. Bae W., Mehra R. K., Mulchandani A., Chen W. 2001; Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338
    [Google Scholar]
  18. Bae W., Mulchandani A., Chen W. 2002; Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223–227
    [Google Scholar]
  19. Bae W., Wu C. H., Kostal J., Mulchandani A., Chen W. 2003; Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180
    [Google Scholar]
  20. Baeuerlein E. 2000 Biomineralization Weinheim, Germany: Wiley-VCH;
  21. Baker A. J. M., Brooks R. R. 1989; Terrestrial higher plants which accumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
    [Google Scholar]
  22. Baldrian P. 2003; Interaction of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91
    [Google Scholar]
  23. Balogh-Brunstad Z., Keller C. K., Gill R. A., Bormann B. T., Li C. Y. 2008; The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochemistry 88:153–167
    [Google Scholar]
  24. Banfield J. F., Nealson K. H. (editors) 1997 Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy and Geochemistry vol. 35 Washington, DC: Mineralogical Society of America;
  25. Banfield J. F., Barker W. W., Welch S. A., Taunton A. 1999; Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci U S A 96:3404–3411
    [Google Scholar]
  26. Banfield J. F., Cervini-Silva J., Nealson K. H. (editors) 2005 Molecular Geomicrobiology, Reviews in Mineralogy and Geochemistry vol. 59 Washington, DC: Mineralogical Society of America;
  27. Bargar J. R., Bernier-Latmani R., Giammar D. E., Tebo B. M. 2008; Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412
    [Google Scholar]
  28. Barkay T., Schaefer J. 2001; Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol 4:318–323
    [Google Scholar]
  29. Barkay T., Wagner-Dobler I. 2005; Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv Appl Microbiol 57:1–52
    [Google Scholar]
  30. Barker W. W., Banfield J. F. 1996; Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chem Geol 132:55–69
    [Google Scholar]
  31. Barker W. W., Banfield J. F. 1998; Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiol J 15:223–244
    [Google Scholar]
  32. Barnes L. J., Janssen F. J., Sherren J., Versteegh J. H., Koch R. O., Scheeren P. J. H. 1992; Simultaneous removal of microbial sulphate and heavy metals from wastewater. Trans Inst Min Metall 101:183–190
    [Google Scholar]
  33. Bazylinski D. A. 2001; Bacterial mineralization. In Encyclopedia of Materials: Science and Technology pp 441–448 Amsterdam: Elsevier;
    [Google Scholar]
  34. Bazylinski D. A., Moskowitz B. M. 1997; Microbial biomineralization of magnetic iron minerals: microbiology, magnetism, and environmental significance. Rev Mineral 35:181–223
    [Google Scholar]
  35. Bazylinski D. A., Schubbe S. 2007; Controlled biomineralization by and applications of magnetotactic bacteria. Adv Appl Microbiol 62:21–62
    [Google Scholar]
  36. Beech I. B., Sunner J. 2004; Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186
    [Google Scholar]
  37. Bennett P. C., Siegel D. I., Melcer M. E., Hassett J. P. 1988; The dissolution of quartz in dilute aqueous solutions of organic acids at 25C. Geochim Cosmochim Acta 52:1521–1530
    [Google Scholar]
  38. Bennett P. C., Hiebert F. K., Choi W. J. 1996; Microbial colonization and weathering of silicates in petroleum-contaminated groundwater. Chem Geol 132:45–53
    [Google Scholar]
  39. Bennett P. C., Rogers J. A., Hiebert F. K., Choi W. J. 2001; Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19
    [Google Scholar]
  40. Bentley R., Chasteen T. G. 2002; Microbial methylation of metalloids: arsenic, antimony and bismuth. Microbiol Mol Biol Rev 66:250–271
    [Google Scholar]
  41. Bergna H. E. 1994; Colloid chemistry of silica – an overview. Colloid Chem Silica 234:1–47
    [Google Scholar]
  42. Beveridge T. J. 1989; Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171
    [Google Scholar]
  43. Beveridge T. J., Meloche J. D., Fyfe W. S., Murray R. G. E. 1983; Diagenesis of metals chemically complexed to bacteria: laboratory formation of metal phosphates, sulfides and organic condensates in artificial sediments. Appl Environ Microbiol 45:1094–1108
    [Google Scholar]
  44. Blaudez D., Jacob C., Turnau K., Colpaert J. V., Ahonen-Jonnarth U., Finlay R., Botton B., Chalot M. 2000; Differential responses of ectomycorrizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371
    [Google Scholar]
  45. Borda M. J., Sparks D. L. 2008; Kinetics and mechanisms of sorption–desorption in soils: a multiscale assessment. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments pp 97–124 Edited by Violante A., Huang P. M., Gadd G. M. New Jersey: Wiley;
    [Google Scholar]
  46. Boswell C. D., Dick R. E., Macaskie L. E. 1999; The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii. Microbiology 145:1711–1720
    [Google Scholar]
  47. Boswell C. D., Dick R. E., Eccles H., Macaskie L. E. 2001; Phosphate uptake and release by Acinetobacter johnsonii in continuous culture and coupling of phosphate release to heavy metal accumulation. J Ind Microbiol Biotechnol 26:333–340
    [Google Scholar]
  48. Bottjer D. J. 2005; Geobiology and the fossil record: eukaryotic, microbes, and their interactions. Palaeogeogr Palaeoclimatol Palaeoecol 219:5–21
    [Google Scholar]
  49. Boukhalfa H., Icopini G. A., Reilly S. D., Neu M. P. 2007; Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1. Appl Environ Microbiol 73:5897–5903
    [Google Scholar]
  50. Boult S., Hand V. L., Vaughan D. J. 2006; Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface. Sci Total Environ 372:299–305
    [Google Scholar]
  51. Bousserrhine N., Gasser U. G., Jeanroy E., Berthelin J. 1999; Bacterial and chemical reductive dissolution of Mn-, Co- Cr-, and Al-substituted goethites. Geomicrobiol J 16:245–258
    [Google Scholar]
  52. Bowen A. D., Davidson F. A., Keatch R., Gadd G. M. 2007; Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44:484–491
    [Google Scholar]
  53. Bradley R., Burt A. J., Read D. J. 1981; Mycorrhizal infection and resistance to heavy metals. Nature 292:335–337
    [Google Scholar]
  54. Bradley B., Burt A. J., Read D. J. 1982; The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91:197–209
    [Google Scholar]
  55. Brandl H. 2001; Heterotrophic leaching. In Fungi in Bioremediation pp 383–423 Edited by Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  56. Brandl H., Faramarzi M. A. 2006; Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuolog 4:93–97
    [Google Scholar]
  57. Brantley S. L., Goldhaber M. B., Ragnarsdottir K. V. 2007; Crossing disciplines and scales to understand the critical zone. Elements 3:307–314
    [Google Scholar]
  58. Brehm U., Gorbushina A., Mottershead D. 2005; The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr, Palaeoclimatol, Palaeoecol 219:117–129
    [Google Scholar]
  59. Bronick C. J., Lal R. 2005; Soil structure and management: a review. Geoderma 124:3–22
    [Google Scholar]
  60. Brown G. E., Foster A. L., Ostergren J. D. 1999; Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc Natl Acad Sci U S A 96:3388–3395
    [Google Scholar]
  61. Brown G. E., Trainor T. P., Chaka A. M. 2008; Geochemistry of mineral surfaces and factors affecting their chemical reactivity. In Chemical Bonding at Surfaces and Interfaces pp 457–509 Edited by Nilsson A., Pettersson L. G. M., Norskov J. K. Amsterdam: Elsevier;
    [Google Scholar]
  62. Burford E. P., Fomina M., Gadd G. M. 2003a; Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155
    [Google Scholar]
  63. Burford E. P., Kierans M., Gadd G. M. 2003b; Geomycology: fungal growth in mineral substrata. Mycologist 17:98–107
    [Google Scholar]
  64. Burford E. P., Hillier S., Gadd G. M. 2006; Biomineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate mono- and dihydrate in carboniferous limestone microcosms. Geomicrobiol J 23:599–611
    [Google Scholar]
  65. Burgstaller W., Schinner F. 1993; Leaching of metals with fungi. J Biotechnol 27:91–116
    [Google Scholar]
  66. Cairney J. W. G., Meharg A. A. 2003; Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740
    [Google Scholar]
  67. Callot G., Guyon A., Mousain D. 1985a; Inter-relation entre aiguilles de calcite et hyphes mycéliens. Agronomie 5:209–216
    [Google Scholar]
  68. Callot G., Mousain D., Plassard C. 1985b; Concentrations de carbonate de calcium sur les parois des hyphes mycéliens. Agronomie 5:143–150
    [Google Scholar]
  69. Cameron S., Urquart D.C.M., Young M.E. 1997; Biological growths on sandstone buildings: control and treatment. Historic Scotland Technical Advice Note 10.
    [Google Scholar]
  70. Chafetz H. S., Buczynski C. 1992; Bacterially induced lithification of microbial mats. Palaios 7:277–293
    [Google Scholar]
  71. Chasteen T. G., Bentley R. 2003; Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 103:1–26
    [Google Scholar]
  72. Chen J., Blume H.-P., Beyer L. 2000; Weathering of rocks induced by lichen colonization – a review. Catena 39:121–146
    [Google Scholar]
  73. Chen B. D., Jakobsen I., Roos P., Zhu Y. G. 2005a; Effects of the mycorrhizal fungus Glomus intraradices on uranium uptake and accumulation by Medicago truncatula L. from uranium-contaminated soil. Plant Soil 275:349–359
    [Google Scholar]
  74. Chen B. D., Zhu Y. G., Zhang X. H., Jakobsen I. 2005b; The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil. Environ Sci Pollut Res Int 12:325–331
    [Google Scholar]
  75. Chorover J., Kretzschmar R., Garcia-Pichel F., Sparks D. L. 2007; Soil biogeochemical processes within the critical zone. Elements 3:321–326
    [Google Scholar]
  76. Christie P., Li X. L., Chen B. D. 2004; Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant Soil 261:209–217
    [Google Scholar]
  77. Cockell C. S., Herrera A. 2008; Why are some microorganisms boring?. Trends Microbiol 16:101–106
    [Google Scholar]
  78. Cockell C. S., Olsson K., Herrera A., Meunier A. 2009a; Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology 7:50–65
    [Google Scholar]
  79. Cockell C. S., Olsson K., Herrera A., Kelly L., Thorsteinsson T., Marteinsson V. 2009b; Bacteria in weathered basaltic glass, Iceland. Geomicrobiol J 26:491–507
    [Google Scholar]
  80. Cromack K. Jr, Solkins P., Grausten W. C., Speidel K., Todd A. W., Spycher G., Li C. Y., Todd R. L. 1979; Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468
    [Google Scholar]
  81. Daghino S., Turci F., Tomatis M., Favier A., Perotto S., Douki T., Fubini B. 2006; Soil fungi reduce the iron content and the DNA damaging effects of asbestos fibers. Environ Sci Technol 40:5793–5798
    [Google Scholar]
  82. Dameron C. T., Reese R. N., Mehra R. K., Kortan A. R., Carroll P. J., Steigerwald M. L., Brus L. E., Winge D. R. 1989; Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597
    [Google Scholar]
  83. De La Torre M. A., Gomez-Alarcon G., Vizcaino C., Garcia M. T. 1992; Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry 19:129–147
    [Google Scholar]
  84. De los Rios A., Galvan V., Ascaso C. 2004; In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegrad 51:113–120
    [Google Scholar]
  85. Dhankher O. P., Li Y. J., Rosen B. P., Shi J., Salt D., Senecoff J. F., Sashti N. A., Meagher R. B. 2002; Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145
    [Google Scholar]
  86. Dombrowski P. M., Long W., Parley K. J., Mahony J. D., Capitani J. F., Di Toro D. M. 2005; Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176
    [Google Scholar]
  87. Dove P. M., De Yoreo J. J., Weiner S. (editors) 2003 Biomineralization. Reviews in Mineralogy and Geochemistry vol. 54 Washington, DC: Mineralogical Society of America;
  88. Dowdle P. R., Oremland R. S. 1998; Microbial oxidation of elemental selenium in soil slurries and bacterial cultures. Environ Sci Technol 32:3749–3755
    [Google Scholar]
  89. Drever J. I., Stillings L. L. 1997; The role of organic acids in mineral weathering. Coll Surf 120:167–181
    [Google Scholar]
  90. Dungan R. S., Frankenberger W. T. 1999; Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremed 3:171–188
    [Google Scholar]
  91. Dupraz C., Visscher P. T. 2005; Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438
    [Google Scholar]
  92. Dupraz C., Reid R. P., Braissant O., Decho A. W., Norman R. S., Visscher P. T. 2009; Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162
    [Google Scholar]
  93. Edwards K. J., Hu B., Hamers R. J., Banfield J. F. 2001; A new look at microbial leaching patterns on sulfide minerals. FEMS Microbiol Ecol 34:197–206
    [Google Scholar]
  94. Edwards K. J., Bach W., McCollom T. M. 2005; Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol 13:449–456
    [Google Scholar]
  95. Ehrlich H. L. 1996; How microbes influence mineral growth and dissolution. Chem Geol 132:5–9
    [Google Scholar]
  96. Ehrlich H. L. 1997; Microbes and metals. Appl Microbiol Biotechnol 48:687–692
    [Google Scholar]
  97. Ehrlich H. L. 1998; Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60
    [Google Scholar]
  98. Ehrlich H. L., Newman D. K. 2009 Geomicrobiology, 5th edn. Boca Raton, FL: CRC Press/Taylor & Francis;
  99. Eide D. J. 2000; Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae. Adv Microb Physiol 43:1–38
    [Google Scholar]
  100. Finneran K. T., Housewright M. E., Lovley D. R. 2002a; Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516
    [Google Scholar]
  101. Finneran K. T., Anderson R. T., Nevin K. P., Lovley D. R. 2002b; Bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam 11:339–357
    [Google Scholar]
  102. Fomina M., Gadd G. M. 2002a; Influence of clay minerals on the morphology of fungal pellets. Mycol Res 106:107–117
    [Google Scholar]
  103. Fomina M., Gadd G. M. 2002b; Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. J Chem Technol Biotechnol 78:23–34
    [Google Scholar]
  104. Fomina M. A., Alexander I. J., Hillier S., Gadd G. M. 2004; Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21:351–366
    [Google Scholar]
  105. Fomina M., Hillier S., Charnock J. M., Melville K., Alexander I. J., Gadd G. M. 2005a; Role of oxalic acid over-excretion in toxic metal mineral transformations by Beauveria caledonica. Appl Environ Microbiol 71:371–381
    [Google Scholar]
  106. Fomina M. A., Alexander I. J., Colpaert J. V., Gadd G. M. 2005b; Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866
    [Google Scholar]
  107. Fomina M., Burford E. P., Gadd G. M. 2005c; Toxic metals and fungal communities. In The Fungal Community. Its Organization and Role in the Ecosystem pp 733–758 . Edited by Dighton J., White J. F., Oudemans P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  108. Fomina M., Charnock J. M., Hillier S., Alexander I. J., Gadd G. M. 2006; Zinc phosphate transformations by the Paxillus involutus/pine ectomycorrhizal association. Microb Ecol 52:322–333
    [Google Scholar]
  109. Fomina M., Charnock J. M., Hillier S., Alvarez R., Gadd G. M. 2007a; Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710
    [Google Scholar]
  110. Fomina M., Charnock J., Bowen A. D., Gadd G. M. 2007b; X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi. Environ Microbiol 9:308–321
    [Google Scholar]
  111. Fomina M., Podgorsky V. S., Olishevska S. V., Kadoshnikov V. M., Pisanska I. R., Hillier S., Gadd G. M. 2007c; Fungal deterioration of barrier concrete used in nuclear waste disposal. Geomicrobiol J 24:643–653
    [Google Scholar]
  112. Fomina M., Charnock J. M., Hillier S., Alvarez R., Francis Livens F., Gadd G. M. 2008; Role of fungi in the biogeochemical fate of depleted uranium. Curr Biol 18:R375–R377
    [Google Scholar]
  113. Fomina M., Burford E. P., Hillier S., Kierans M., Gadd G. M. 2010; Rock-building fungi. Geomicrobiol J in press
    [Google Scholar]
  114. Fortin D., Ferris F. G., Beveridge T. J. 1997; Surface-mediated mineral development by bacteria. In Reviews in Mineralogy vol. 35 pp 161–180 Edited by Banfield J., Nealson K. H. Washington, DC: Mineralogical Society of America;
    [Google Scholar]
  115. Gadd G. M. 1986; The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology. In Immobilisation of Ions by Bio-sorption pp 135–147 Edited by Eccles H., Hunt S. Chichester: Ellis Horwood;
    [Google Scholar]
  116. Gadd G. M. 1992a; Metals and microorganisms: a problem of definition. FEMS Microbiol Lett 100:197–204
    [Google Scholar]
  117. Gadd G. M. 1992b; Microbial control of heavy metal pollution. In Microbial Control of Pollution pp 59–88 Edited by Fry J. C., Gadd G. M., Herbert R. A., Jones C. W., Watson-Craik I. Cambridge: Cambridge University Press;
    [Google Scholar]
  118. Gadd G. M. 1993a; Interactions of fungi with toxic metals. New Phytol 124:25–60
    [Google Scholar]
  119. Gadd G. M. 1993b; Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol Rev 11:297–316
    [Google Scholar]
  120. Gadd G. M. 1999; Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92
    [Google Scholar]
  121. Gadd G. M. 2000a; Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279
    [Google Scholar]
  122. Gadd G. M. 2000b; Microbial interactions with tributyltin compounds: detoxification, accumulation, and environmental fate. Sci Total Environ 258:119–127
    [Google Scholar]
  123. Gadd G. M. 2001a; Accumulation and transformation of metals by microorganisms. In Biotechnology, a Multi-volume Comprehensive Treatise,vol. 10, Special Processes pp 225–264 . Edited by Rehm H.-J., Reed G., Puhler A., Stadler P. Weinheim: Wiley-VCH;
    [Google Scholar]
  124. Gadd G. M. editor 2001b Fungi in Bioremediation Cambridge: Cambridge University Press;
  125. Gadd G. M. 2004; Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119
    [Google Scholar]
  126. Gadd G. M. 2005; Microorganisms in toxic metal polluted soils. In Microorganisms in Soils: Roles in Genesis and Functions pp 325–356 Edited by Buscot F., Varma A. Berlin: Springer-Verlag;
    [Google Scholar]
  127. Gadd G. M. editor 2006 Fungi in Biogeochemical Cycles Cambridge: Cambridge University Press;
  128. Gadd G. M. 2007; Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49
    [Google Scholar]
  129. Gadd G. M. 2008a; Bacterial and fungal geomicrobiology: a problem with communities?. Geobiology 6:278–284
    [Google Scholar]
  130. Gadd G. M. 2008b; Fungi and their role in the biosphere. In Encyclopedia of Ecology pp 1709–1717 Edited by Jorgensen S. E., Fath B. Amsterdam: Elsevier;
    [Google Scholar]
  131. Gadd G. M. 2009a; Heavy metal pollutants: environmental and biotechnological aspects. In Encyclopedia of Microbiology pp 321–334 Edited by Schaechter M. Oxford: Elsevier;
    [Google Scholar]
  132. Gadd G. M. 2009b; Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28
    [Google Scholar]
  133. Gadd G. M., Griffiths A. J. 1978; Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317
    [Google Scholar]
  134. Gadd G. M., Raven J. A. 2010; Geomicrobiology of eukaryotic microorganisms. Geomicrobiol J in press
    [Google Scholar]
  135. Gadd G. M., Sayer J. A. 2000; Fungal transformations of metals and metalloids. In Environmental Microbe–Metal Interactions pp 237–256 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  136. Gadd G. M., White C. 1990; Biosorption of radionuclides by yeast and fungal biomass. J Chem Technol Biotechnol 49:331–343
    [Google Scholar]
  137. Gadd G. M., White C. 1993; Microbial treatment of metal pollution – a working biotechnology?. Trends Biotechnol 11:353–359
    [Google Scholar]
  138. Gadd G. M., Chudek J. A., Foster R., Reed R. H. 1984; The osmotic responses of Penicillium ochro-chloron: changes in internal solute levels in response to copper and salt stress. J Gen Microbiol 130:1969–1975
    [Google Scholar]
  139. Gadd G. M., Fomina M., Burford E. P. 2005; Fungal roles and function in rock, mineral and soil transformations. In Microorganisms in Earth Systems – Advances in Geomicrobiology pp 201–231 . Edited by Gadd G. M., Semple K. T., Lappin-Scott H. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  140. Gadd G. M., Burford E. P., Fomina M., Melville K. 2007; Mineral transformation and biogeochemical cycles: a geomycological perspective. In Fungi in the Environment pp 78–111 Edited by Gadd G. M., Dyer P., Watkinson S. Cambridge: Cambridge University Press;
    [Google Scholar]
  141. Garnham G. W., Codd G. A., Gadd G. M. 1992; Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Technol 26:1764–1770
    [Google Scholar]
  142. Garnham G. W., Codd G. A., Gadd G. M. 1993; Uptake of cobalt and caesium by microalgal- and cyanobacterial-clay mixtures. Microb Ecol 25:71–82
    [Google Scholar]
  143. Gaylarde C., Morton G. 2002; Biodeterioration of mineral materials. In Environmental Microbiology vol. 1 pp 516–528 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  144. Gharieb M. M., Gadd G. M. 1999; Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi. Mycol Res 103:473–481
    [Google Scholar]
  145. Gharieb M. M., Sayer J. A., Gadd G. M. 1998; Solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by Aspergillus niger and Serpula himantioides. Mycol Res 102:825–830
    [Google Scholar]
  146. Gharieb M. M., Kierans M., Gadd G. M. 1999; Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction and volatilization. Mycol Res 103:299–305
    [Google Scholar]
  147. Giller K. E., Witter E., McGrath S. P. 2009; Heavy metals and soil microbes. Soil Biol Biochem 41:2031–2037
    [Google Scholar]
  148. Gilmour C., Riedel G. 2009; Biogeochemistry of trace metals and metalloids. In Encyclopedia of Inland Waters pp 7–15 Edited by Likens G. E. Amsterdam: Elsevier;
    [Google Scholar]
  149. Glasauer S., Langley S., Beveridge T. J. 2001; Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo. Appl Environ Microbiol 67:5544–5550
    [Google Scholar]
  150. Glasauer S., Langley S., Beveridge T. J. 2002; Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science 295:117–119
    [Google Scholar]
  151. Glasauer S., Beveridge T. J., Burford E. P., Harper F. A., Gadd G. M. 2004; Metals and metalloids, transformations by microorganisms. In Encyclopedia of Soils in the Environment pp 438–447 Edited by Hillel D., Rosenzweig C., Powlson D. S., Scow K. M., Singer M. J., Sparks D. L., Hatfield J. Amsterdam: Elsevier;
    [Google Scholar]
  152. Gleeson D. B., Clipson N. J. W., Melville K., Gadd G. M., McDermott F. P. 2005; Mineralogical control of fungal community structure in a weathered pegmatitic granite. Microb Ecol 50:360–368
    [Google Scholar]
  153. Gleeson D. B., Kennedy N. M., Clipson N. J. W., Melville K., Gadd G. M., McDermott F. P. 2006; Mineralogical influences on bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51:526–534
    [Google Scholar]
  154. Gleeson D., McDermott F., Clipson N. 2007; Understanding microbially active biogeochemical environments. Adv Appl Microbiol 62:81–104
    [Google Scholar]
  155. Gleeson D. B., Melville K., McDermott F. P., Clipson N. J. W., Gadd G. M. 2010; Molecular characterization of fungal communities in sandstone. Geomicrobiol J in press
    [Google Scholar]
  156. Gohre V., Paszkowski U. 2006; Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122
    [Google Scholar]
  157. Golubic S., Radtke G., Le Campion-Alsumard T. 2005; Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235
    [Google Scholar]
  158. Gonzalez-Chavez M. C., Carrillo-Gonzalez R., Wright S. F., Nichols K. A. 2004; The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323
    [Google Scholar]
  159. Gorbushina A. A. 2007; Life on the rocks. Environ Microbiol 9:1613–1631
    [Google Scholar]
  160. Gorbushina A. A., Broughton W. J. 2009; Microbiology of the atmosphere–rock interface: how biological interactions and physical stresses modulate a sophisticated microbial ecosystem. Annu Rev Microbiol 63:431–450
    [Google Scholar]
  161. Gorbushina A. A., Krumbein W. E. 2005; Role of organisms in wear down of rocks and minerals. In Microorganisms in Soils: Roles in Genesis and Functions pp 59–84 Edited by Buscot F., Varma A. Berlin: Springer-Verlag;
    [Google Scholar]
  162. Gorbushina A. A., Krumbein W. E., Hamann R., Panina L., Soucharjevsky S., Wollenzien U. 1993; On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221
    [Google Scholar]
  163. Gorbushina A. A., Boettcher M., Brumsack H. J., Krumbein W. E., Vendrell-Saz M. 2001; Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiol J 18:117–132
    [Google Scholar]
  164. Grote G., Krumbein W. E. 1992; Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57
    [Google Scholar]
  165. Gu J. D. 2009; Corrosion, microbial. In Encyclopedia of Microbiology, 3rd edn. pp 259–269 Edited by Schaechter M. Amsterdam: Elsevier;
    [Google Scholar]
  166. Gu J. D., Ford T. E., Berke N. S., Mitchell R. 1998; Biodeterioration of concrete by the fungus Fusarium. Int Biodeterior Biodegrad 41:101–109
    [Google Scholar]
  167. Haas J. R., Purvis O. W. 2006; Lichen biogeochemistry. In Fungi in Biogeochemical Cycles pp 344–376 Edited by Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  168. Hamilton W. A. 2003; Microbially influenced corrosion as a model system for the study of metal–microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76
    [Google Scholar]
  169. Hennebel T., Gusseme B. D., Verstraete W. 2009; Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98
    [Google Scholar]
  170. Hirsch P., Eckhardt F. E. W., Palmer R. J. Jr 1995a; Methods for the study of rock inhabiting microorganisms – a mini review. J Microbiol Methods 23:143–167
    [Google Scholar]
  171. Hochella M. F. 2002; Sustaining Earth: thoughts on the present and future roles in mineralogy in environmental science. Mineral Mag 66:627–652
    [Google Scholar]
  172. Hockin S. L., Gadd G. M. 2003; Linked redox-precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl Environ Microbiol 69:7063–7072
    [Google Scholar]
  173. Hockin S., Gadd G. M. 2006; Removal of selenate from sulphate-containing media by sulphate-reducing bacterial biofilms. Environ Microbiol 8:816–826
    [Google Scholar]
  174. Hockin S., Gadd G. M. 2007; Bioremediation of metals by precipitation and cellular binding. In Sulphate-reducing Bacteria: Environmental and Engineered Systems pp 405–434 Edited by Barton L. L., Hamilton W. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  175. Hoffland E., Kuyper T. W., Wallander H., Plassard C., Gorbushina A. A., Haselwandter K., Holmstrom S., Landeweert R., Lundstrom U. S. other authors 2004; The role of fungi in weathering. Front Ecol Environ 2:258–264
    [Google Scholar]
  176. Holden J. F., Adams M. W. W. 2003; Microbe–metal interactions in marine hydrothermal vents. Curr Opin Chem Biol 7:160–165
    [Google Scholar]
  177. Hoppert M., Flies C., Pohl W., Gunzl B., Schneider J. 2004; Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428
    [Google Scholar]
  178. Huang J. W. W., Chen J. J., Berti W. R., Cunningham S. D. 1997; Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805
    [Google Scholar]
  179. Huang P. M., Wang M. C., Wang M. K. 2004; Mineral–organic–microbial interactions. In Encyclopedia of Soils in the Environment pp 486–499 Edited by Hillel D., Rosenzweig C., Powlson D. S., Scow K. M., Singer M. J., Sparks D. L., Hatfield J. Amsterdam: Elsevier;
    [Google Scholar]
  180. Huang P.-M., Wang M.-K., Chiu C.-Y. 2005; Soil mineral–organic matter–microbe interactions: impacts on biogeochemical processes and biodiversity in soils. Pedobiologia (Jena 49:609–635
    [Google Scholar]
  181. Jacobs H., Boswell G. P., Ritz K., Davidson F. A., Gadd G. M. 2002a; Solubilization of metal phosphates by Rhizoctonia solani. Mycol Res 106:1468–1479
    [Google Scholar]
  182. Jacobs H., Boswell G. P., Ritz K., Davidson F. A., Gadd G. M. 2002b; Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71
    [Google Scholar]
  183. Jarosz-Wilkołazka A., Gadd G. M. 2003; Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere 52:541–547
    [Google Scholar]
  184. Jerez C. A. 2009; Metal extraction and biomining. In Encyclopedia of Microbiology, 3rd edn. pp 407–420 Edited by Schaechter M. Amsterdam: Elsevier;
    [Google Scholar]
  185. Jongmans A. G., van Breemen N., Lundstrom U. S., van Hees P. A. W., Finlay R. D., Srinivasan M., Unestam T., Giesler R., Melkerud P.-A., Olsson M. 1997; Rock-eating fungi. Nature 389:682–683
    [Google Scholar]
  186. Kalinowski B. E., Liermann L. J., Givens S., Brantley S. L. 2000; Rates of bacteria-promoted solubilization of Fe from minerals: a review of problems and approaches. Chem Geol 169:357–370
    [Google Scholar]
  187. Karlson U., Frankenberger W. T. 1988; Effects of carbon and trace element addition on alkylselenide production by soil. Soil Sci Soc Am J 52:1640–1644
    [Google Scholar]
  188. Karlson U., Frankenberger W. T. 1989; Accelerated rates of selenium volatilization from California soils. Soil Sci Soc Am J 53:749–753
    [Google Scholar]
  189. Kartal S. N., Katsumata N., Imamura Y. 2006; Removal of copper, chromium, and arsenic from CCA-treated wood by organic acids released by mold and staining fungi. For Prod J 56:33–37
    [Google Scholar]
  190. Kierans M., Staines A. M., Bennett H., Gadd G. M. 1991; Silver tolerance and accumulation in yeasts. Biol Met 4:100–106
    [Google Scholar]
  191. Kim B. H., Gadd G. M. 2008 Bacterial Physiology and Metabolism Cambridge: Cambridge University Press;
  192. Klaus-Joerger T., Joerger R., Olsson E., Granquist C.-G. 2001; Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials sciences. Trends Biotechnol 19:15–20
    [Google Scholar]
  193. Koele N., Turpault M.-P., Hildebrand E. E., Uroz S., Frey-Klett P. 2009; Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: budget analysis and bacterial quantification. Soil Biol Biochem 41:1935–1942
    [Google Scholar]
  194. Kolo K., Claeys P. 2005; In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2:277–293
    [Google Scholar]
  195. Kolo K., Keppens E., Preat A., Claeys P. 2007; Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res 112:1–20
    [Google Scholar]
  196. Konhauser K. 2007 Introduction to Geomicrobiology Oxford: Blackwell;
  197. Kraemer S. M., Cheah S. F., Zapf R., Xu J. D., Raymond K. N., Sposito G. 1999; Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochim Cosmochim Acta 63:3003–3008
    [Google Scholar]
  198. Krantz-Rulcker C., Allard B., Schnurer J. 1993; Interactions between a soil fungus, Trichoderma harzianum and IIB metals – adsorption to mycelium and production of complexing metabolites. Biometals 6:223–230
    [Google Scholar]
  199. Krantz-Rulcker C., Allard B., Schnurer J. 1996; Adsorption of IIB metals by 3 common soil fungi – comparison and assessment of importance for metal distribution in natural soil systems. Soil Biol Biochem 28:967–975
    [Google Scholar]
  200. Krupa P., Kozdroj J. 2004; Accumulation of heavy metals by ectomycorrhizal fungi colonizing birch trees growing in an industrial desert soil. World J Microbiol Biotechnol 20:427–430
    [Google Scholar]
  201. Kumar R., Kumar A. V. 1999 Biodeterioration of Stone in Tropical Environments: an Overview. Madison, WI: J. Paul Getty Trust;
  202. Landa E. R. 2005; Microbial biogeochemistry of uranium mill tailings. Adv Appl Microbiol 57:113–130
    [Google Scholar]
  203. Landa E. R., Gray J. R. 1995; US Geological Survey – results on the environmental fate of uranium mining and milling wastes. J Ind Microbiol 26:19–31
    [Google Scholar]
  204. Landeweert R., Hoffland E., Finlay R. D., Kuyper T. W., Van Breemen N. 2001; Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254
    [Google Scholar]
  205. Lapeyrie F., Picatto C., Gerard J., Dexheimer J. 1990; TEM study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9:163–166
    [Google Scholar]
  206. Lapeyrie F., Ranger J., Vairelles D. 1991; Phosphate-solubilizing activity of ectomycorrhizal fungi in vitro. Can J Bot 69:342–346
    [Google Scholar]
  207. Lebrun E., Brugna M., Baymann F., Muller D., Lievremont D., Lett M. C., Nitschke W. 2003; Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20:686–693
    [Google Scholar]
  208. Ledin M., Krantz-Rulcker C., Allard B. 1996; Zn, Cd and Hg accumulation by microorganisms, organic and inorganic soil components in multicompartment systems. Soil Biol Biochem 28:791–799
    [Google Scholar]
  209. Lee J.-U., Beveridge T. J. 2001; Interaction between iron and Pseudomonas aeruginosa biofilms attached to Sepharose surfaces. Chem Geol 180:67–80
    [Google Scholar]
  210. Leyval C., Joner E. J. 2001; Bioavailability of heavy metals in the mycorrhizosphere. In Trace Elements in the Rhizosphere pp 165–185 Edited by Gobran G. R., Wenzel W. W., Lombi E. Boca Raton, FL: CRC Press;
    [Google Scholar]
  211. Leyval C., Turnau K., Haselwandter K. 1997; Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153
    [Google Scholar]
  212. Lian B., Chen Y., Zhu L., Yang R. 2008a; Effect of microbial weathering on carbonate rocks. Earth Sci Front 15:90–99
    [Google Scholar]
  213. Lian B., Wang B., Pan M., Liu C., Teng H. H. 2008b; Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98
    [Google Scholar]
  214. Lisci L., Monte M., Pacini E. 2003; Lichens and higher plants on stone: a review. Int Biodeterior Biodegrad 51:1–17
    [Google Scholar]
  215. Lloyd J. R. 2003; Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425
    [Google Scholar]
  216. Lloyd J. R., Lovley D. R. 2001; Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253
    [Google Scholar]
  217. Lloyd J. R., Macaskie L. E. 1998; Enzymatic recovery of elemental palladium using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609
    [Google Scholar]
  218. Lloyd J. R., Renshaw J. C. 2005; Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16:254–260
    [Google Scholar]
  219. Lloyd J. R., Ridley J., Khizniak T., Lyalikova N. N., Macaskie L. E. 1999a; Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor. Appl Environ Microbiol 65:2691–2696
    [Google Scholar]
  220. Lloyd J. R., Thomas G. H., Finlay J. A., Cole J. A., Macaskie L. E. 1999b; Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol Bioeng 66:122–130
    [Google Scholar]
  221. Lloyd J. R., Lovley D. R., Macaskie L. E. 2003; Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128
    [Google Scholar]
  222. Lloyd J. R., Pearce C. I., Coker V. S., Pattrick R. A. D. P., van der Laan G., Cutting R., Vaughan D. V., Paterson-Beedle M., Mikheenko I. P. other authors 2008; Biomineralization: linking the fossil record to the production of high value functional materials. Geobiology 6:285–297
    [Google Scholar]
  223. Lodewyckx C., Taghavi S., Mergeay M., Vangronsveld J., Clijsters H., van der Lelie D. 2001; The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187
    [Google Scholar]
  224. Losi M. E., Frankenberger W. T. 1998; Microbial oxidation and solubilization of precipitated elemental selenium in soil. J Environ Qual 27:836–843
    [Google Scholar]
  225. Lovley D. R. 1995; Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93
    [Google Scholar]
  226. Lovley D. R. 2000; Fe(III) and Mn(IV) reduction. In Environmental Microbe–Metal Interactions pp 3–30 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  227. Lovley D. R. 2001; Anaerobes to the rescue. Science 293:1444–1446
    [Google Scholar]
  228. Lovley D. R., Coates J. D. 1997; Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289
    [Google Scholar]
  229. Lovley D. R., Phillips E. J. P., Gorby Y. A., Landa E. R. 1991; Microbial reduction of uranium. Nature 350:413–416
    [Google Scholar]
  230. Lunsdorf H., Erb R. W., Abraham W. R., Timmis K. N. 2000; ‘Clay hutches’: a novel interaction between bacteria and clay minerals. Environ Microbiol 2:161–168
    [Google Scholar]
  231. Macalady J., Banfield J. F. 2003; Molecular geomicrobiology: genes and geochemical cycling. Earth Planet Sci Lett 209:1–17
    [Google Scholar]
  232. Macaskie L. E. 1991; The application of biotechnology to the treatment of wastes produced by the nuclear fuel cycle – biodegradation and bioaccumulation as a means of treating radionuclide-containing streams. Crit Rev Biotechnol 11:41–112
    [Google Scholar]
  233. Macaskie L. E., Jeong B. C., Tolley M. R. 1994; Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows. FEMS Microbiol Rev 14:351–367
    [Google Scholar]
  234. Macreadie I. G., Sewell A. K., Winge D. R. 1994; Metal ion resistance and the role of metallothionein in yeast. In Metal Ions in Fungi pp 279–310 Edited by Winkelmann G., Winge D. R. New York: Marcel Dekker;
    [Google Scholar]
  235. Mandal S. K., Roy A., Banerjee P. C. 2002; Iron leaching from china clay by fungal strains. Trans Indian Inst Metals 55:1–7
    [Google Scholar]
  236. Marshall K. C. 1971 Sorption interactions between soil particles and microorganisms. Soil Biochemistry vol.2 pp 409–445 Edited by McLaren A. D., Skujins J. New York: Marcel Dekker;
    [Google Scholar]
  237. Marshman N. A., Marshall K. C. 1981a; Bacterial growth on proteins in the presence of clay minerals. Soil Biol Biochem 13:127–134
    [Google Scholar]
  238. Marshman N. A., Marshall K. C. 1981b; Some effects of montmorillonite on the growth of mixed microbial cultures. Soil Biol Biochem 13:135–141
    [Google Scholar]
  239. Martino E., Perotto S., Parsons R., Gadd G. M. 2003; Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141
    [Google Scholar]
  240. McLean J., Beveridge T. J. 2001; Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084
    [Google Scholar]
  241. McLean J. S., Lee J.-U., Beveridge T. J. 2002; Interactions of bacteria and environmental metals, fine-grained mineral development, and bioremediation strategies. In Interactions Between Soil Particles and Microorganisms pp 228–261 Edited by Huang P. M., Bollag J.-M., Senesi N. New York: Wiley;
    [Google Scholar]
  242. Meharg A. A. 2003; The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265
    [Google Scholar]
  243. Meharg A. A., Cairney J. W. G. 2000; Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112
    [Google Scholar]
  244. Miyata N., Tani Y., Iwahori K., Soma M. 2004; Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiol Ecol 47:101–109
    [Google Scholar]
  245. Miyata N., Tani Y., Maruo K., Tsuno H., Sakata M., Iwahori K. 2006; Manganese(IV) oxide production by Acremonium sp. strain KR21-2 and extracellular Mn(II) oxidase activity. Appl Environ Microbiol 72:6467–6473
    [Google Scholar]
  246. Miyata N., Tani Y., Sakata M., Iwahori K. 2007; Microbial manganese oxide formation and interaction with toxic metal ions. J Biosci Bioeng 104:1–8
    [Google Scholar]
  247. Morley G. F., Gadd G. M. 1995; Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438
    [Google Scholar]
  248. Mossman D. J., Reimer T., Durstling H. 1999; Microbial processes in gold migration and deposition: modern analogues to ancient deposits. Geosci Canada 26:131–140
    [Google Scholar]
  249. Mowll J. L., Gadd G. M. 1984; Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284
    [Google Scholar]
  250. Mulligan C. N., Galvez-Cloutier R. 2003; Bioremediation of metal contamination. Environ Monit Assess 84:45–60
    [Google Scholar]
  251. Nica D., Davis J. L., Kirby L., Zuo G., Roberts D. J. 2000; Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int Biodeterior Biodegrad 46:61–68
    [Google Scholar]
  252. Nies D. H. 1992a; Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27:17–28
    [Google Scholar]
  253. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750
    [Google Scholar]
  254. Nies D. H. 2003; Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339
    [Google Scholar]
  255. Nies D. H., Silver S. 1995; Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199
    [Google Scholar]
  256. Olsson P. A., Wallander H. 1998; Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27:195–205
    [Google Scholar]
  257. Oremland R., Stolz J. 2000; Dissimilatory reduction of selenate and arsenate in nature. In Environmental Microbe–Metal Interactions pp 199–224 Edited by Lovley D. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  258. Oremland R. S., Hollibaugh J. T., Maest A. S., Presser T. S., Miller L. G., Culbertson C. W. 1989; Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343
    [Google Scholar]
  259. Osman D., Cavet J. S. 2008; Copper homeostasis in bacteria. Adv Appl Microbiol 65:217–247
    [Google Scholar]
  260. Paez-Espino D., Tamames J., de Lorenzo V., Canovas D. 2009; Microbial responses to environmental arsenic. Biometals 22:117–130
    [Google Scholar]
  261. Perotto S., Girlanda M., Martino E. 2002; Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. Plant Soil 244:41–53
    [Google Scholar]
  262. Perry R. S., Mcloughlin N., Lynne B. Y., Sephton M. A., Oliver J. D., Perry C. C., Campbell K., Engel M. H., Farmer J. D. other authors 2007; Defining biominerals and organominerals: direct and indirect indicators of life. Sediment Geol 201:157–179
    [Google Scholar]
  263. Petkov V., Ren Y., Saratovsky I., Pasten P., Gurr S. J., Hayward M. A., Poeppelmeier K. R., Gaillard J. F. 2009; Atomic-scale structure of biogenic materials by total X-ray diffraction: a study of bacterial and fungal MnO . ACS Nano 3:441–445
    [Google Scholar]
  264. Phillips E. J. P., Landa E. R., Lovley D. R. 1995; Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207
    [Google Scholar]
  265. Posfai M., Dunin-Borkowski R. E. 2009; Magnetic nanocrystals in organisms. Elements 5:235–240
    [Google Scholar]
  266. Pumpel T., Paknikar K. M. 2001; Bioremediation technologies for metal-containing wastewaters using metabolically active microorganisms. Adv Appl Microbiol 48:135–169
    [Google Scholar]
  267. Purvis O. W. 1996; Interactions of lichens with metals. Sci Prog 79:283–309
    [Google Scholar]
  268. Purvis O. W., Halls C. 1996; A review of lichens in metal-enriched environments. Lichenologist 28:571–601
    [Google Scholar]
  269. Purvis O. W., Pawlik-Skowronska B. 2008; Lichens and metals. In Stress in Yeasts and Filamentous Fungi pp 175–200 Amsterdam: Elsevier;
    [Google Scholar]
  270. Ranalli G., Zanardini E., Sorlini C. C. 2009; Biodeterioration – including cultural heritage. In Encyclopedia of Microbiology, 3rd edn. pp 191–205 Edited by Schaechter M. Amsterdam: Elsevier;
    [Google Scholar]
  271. Rawlings D. E. 2002; Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91
    [Google Scholar]
  272. Rawlings D. E., Dew D., du Plessis C. 2003; Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44
    [Google Scholar]
  273. Reith F., Rogers S. L., McPhail D. C., Webb D. 2006; Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236
    [Google Scholar]
  274. Reith F., Lengke M. F., Falconer D., Craw D., Southam G. 2007; The geomicrobiology of gold. ISME J 1:567–584
    [Google Scholar]
  275. Reith F., Etschmann B., Grosse C., Moors H., Benotmane M. A., Monsieurs P., Grass G., Doonan C., Vogt S. other authors 2009; Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106:17757–17762
    [Google Scholar]
  276. Renninger N., McMahon K. D., Knopp R., Nitsche H., Clark D. S., Keasling J. D. 2001; Uranyl precipitation by biomass from an enhanced biological phosphorus removal reactor. Biodegradation 12:401–410
    [Google Scholar]
  277. Renninger N., Knopp R., Nitsche H., Clark D. S., Jay D., Keasling J. D. 2004; Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412
    [Google Scholar]
  278. Renshaw J. C., Robson G. D., Trinci A. P. J., Wiebe M. G., Livens F. R., Collison D., Taylor R. J. 2002; Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142
    [Google Scholar]
  279. Ritz K., Young I. M. 2004; Interaction between soil structure and fungi. Mycologist 18:52–59
    [Google Scholar]
  280. Rodriguez Navarro C., Sebastian E., Rodriguez-Gallego M. 1997; An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sediment Geol 109:1–11
    [Google Scholar]
  281. Roeselers G., van Loosdrecht M. C. M., Muyzer G. 2007; Heterotrophic pioneers facilitate phototrophic biofilm development. Microb Ecol 54:578–585
    [Google Scholar]
  282. Rogers J. R., Bennett P. C. 2004; Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203:91–108
    [Google Scholar]
  283. Rosen B. P. 2002; Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol 133:689–693
    [Google Scholar]
  284. Rosen K., Zhong W. L., Martensson A. 2005; Arbuscular mycorrhizal fungi mediated uptake of Cs-137 in leek and ryegrass. Sci Total Environ 338:283–290
    [Google Scholar]
  285. Rosling A., Lindahl B. D., Taylor A. F. S., Finlay R. D. 2004a; Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiol Ecol 47:31–37
    [Google Scholar]
  286. Rosling A., Lindahl B. D., Finlay R. D. 2004b; Carbon allocation to ectomycorrhizal roots and mycelium colonising different mineral substrates. New Phytol 162:795–802
    [Google Scholar]
  287. Rufyikiri G., Huysmans L., Wannijn J., Van Hees M., Leyval C., Jakobsen I. 2004; Arbuscular mycorrhizal fungi can decrease the uptake of uranium by subterranean clover grown at high levels of uranium in soil. Environ Pollut 130:427–436
    [Google Scholar]
  288. Rugh C. L., Wilde H. D., Stack N. M., Thompson D. M., Summers A. O., Meagher R. B. 1996; Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187
    [Google Scholar]
  289. Rusin P. A., Sharp J. E., Oden K. L., Arnold R. G., Sinclair N. A. 1993; Isolation and physiology of a manganese-reducing Bacillus polymyxa from an Oligocene silver-bearing ore and sediment with reference to Precambrian biogeochemistry. Precambrian Res 61:231–240
    [Google Scholar]
  290. Ruta L., Paraschivescu C., Matache M., Avramescu S., Farcasanu I. C. 2010; Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771
    [Google Scholar]
  291. Salt D. E., Smith R. D., Raskin I. 1998; Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668
    [Google Scholar]
  292. Sand W. 1997; Microbial mechanisms of deterioration of inorganic substrates: a general mechanistic overview. Int Biodeter Biodeg 40:183–190
    [Google Scholar]
  293. Santhiya D., Ting Y. P. 2005; Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. J Biotechnol 116:171–184
    [Google Scholar]
  294. Saratovsky I., Gurr S. J., Hayward M. A. 2009; The structure of manganese oxide formed by the fungus Acremonium sp. strain KR21-2. Geochim Cosmochim Acta 73:3291–3300
    [Google Scholar]
  295. Sauge-Merle S., Cuine S., Carrier P., Lecomte-Pradines C., Luu D.-T., Peltier G. 2003; Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494
    [Google Scholar]
  296. Sayer J. A., Gadd G. M. 1997; Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol Res 101:653–661
    [Google Scholar]
  297. Sayer J. A., Cotter-Howells J. D., Watson C., Hillier S., Gadd G. M. 1999; Lead mineral transformation by fungi. Curr Biol 9:691–694
    [Google Scholar]
  298. Scheerer S., Ortega-Morales O., Gaylarde C. 2009; Microbial deterioration of stone monuments: an updated overview. Adv Appl Microbiol 66:97–139
    [Google Scholar]
  299. Schneider J., Le Campion-Alsumard T. 1999; Construction and destruction of carbonates by marine and freshwater cyanobacteria. Eur J Phycol 34:417–426
    [Google Scholar]
  300. Schröder I., Johnson E., de Vries S. 2003; Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447
    [Google Scholar]
  301. Schutzendubel A., Polle A. 2002; Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365
    [Google Scholar]
  302. Seaward M. R. D. 2003; Lichens, agents of monumental destruction. Microbiol Today 30:110–112
    [Google Scholar]
  303. Silver S., Phung L. T. 1996; Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789
    [Google Scholar]
  304. Silver S., Phung L. T. 2009; Heavy metals, bacterial resistance. In Encyclopedia of Microbiology pp 220–227 . Edited by Schaechter M. Oxford: Elsevier;
    [Google Scholar]
  305. Smith W. L., Gadd G. M. 2000; Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991
    [Google Scholar]
  306. Smith S. E., Read D. J. 1997 Mycorrhizal Symbiosis, 2nd edn. San Diego: Academic Press;
  307. Smits M. 2006; Mineral tunnelling by fungi. In Fungi in Biogeochemical Cycles pp 311–327 Edited by Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  308. Song W. Y., Sohn E. J., Martinoia E., Lee Y. J., Yang Y. Y., Jasinski M., Forestier C., Hwang I., Lee Y. 2003; Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919
    [Google Scholar]
  309. Southam G., Lengke M. F., Fairbrother L., Reith F. 2009; The biogeochemistry of gold. Elements 5:303–307
    [Google Scholar]
  310. Sparks D. L. 2005; Toxic metals in the environment: the role of surfaces. Elements 1:193–196
    [Google Scholar]
  311. Sreekrishnan T. R., Tyagi R. D. 1994; Heavy metal leaching from sewage sludges: a techno-economic evaluation of the process options. Environ Technol 15:531–543
    [Google Scholar]
  312. Sterflinger K. 2000; Fungi as geologic agents. Geomicrobiol J 17:97–124
    [Google Scholar]
  313. Stolz J. F., Oremland R. S. 1999; Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627
    [Google Scholar]
  314. Stolz J. F., Basu P., Santini J. M., Oremland R. S. 2006; Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130
    [Google Scholar]
  315. Strasser H., Burgstaller W., Schinner F. 1994; High yield production of oxalic acid for metal leaching purposes by Aspergillus niger. FEMS Microbiol Lett 119:365–370
    [Google Scholar]
  316. Stumm W., Morgan J. J. 1996 Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters New York: Wiley;
  317. Suzuki I. 2001; Microbial leaching of metals from sulfide minerals. Biotechnol Adv 19:119–132
    [Google Scholar]
  318. Tamaki S., Frankenberger W. T. 1992; Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110
    [Google Scholar]
  319. Tazaki K. 2006; Clays, microorganisms, and biomineralization. In Handbook of Clay Science, Developments in Clay Science vol. 1 pp 477–497 Edited by Bergaya F., Theng B. K. G., Lagaly G. Amsterdam: Elsevier;
    [Google Scholar]
  320. Tebo B. M., Obraztsova A. Y. 1998; Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198
    [Google Scholar]
  321. Tebo B. M., Bargar J. R., Clement B. G., Dick G. J., Murray K. J., Parker D., Verity R., Webb S. M. 2004; Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328
    [Google Scholar]
  322. Tebo B. M., Johnson H. A., McCarthy J. K., Templeton A. S. 2005; Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–438
    [Google Scholar]
  323. Thayer J. S. 1989; Methylation: its role in the environmental mobility of heavy elements. Appl Organomet Chem 3:123–128
    [Google Scholar]
  324. Theng B. K. G., Yuan G. 2008; Nanoparticles in the soil environment. Elements 4:395–399
    [Google Scholar]
  325. Thompson-Eagle E. T., Frankenberger W. T. 1992; Bioremediation of soils contaminated with selenium. In Advances in Soil Science pp 261–309 Edited by Lal R., Stewart B. A. New York: Springer;
    [Google Scholar]
  326. Thompson-Eagle E. T., Frankenberger W. T., Karlson U. 1989; Volatilization of selenium by Alternaria alternata. Appl Environ Microbiol 55:1406–1413
    [Google Scholar]
  327. Tiano P. 2002 Biodegradation of cultural heritage: decay, mechanisms and control methods Seminar article, New University of Lisbon, Department of Conservation and Restoration; 7–12 January 2002 (. )
    [Google Scholar]
  328. Tsai S.-L., Singh S., Chen W. 2009; Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667
    [Google Scholar]
  329. Tullio M., Pierandrei F., Salerno A., Rea E. 2003; Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils 37:211–214
    [Google Scholar]
  330. Uroz S., Calvaruso C., Turpault M.-P., Frey-Klett P. 2009; Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387
    [Google Scholar]
  331. Urrutia M. M., Beveridge T. J. 1994; Formation of fine-grained silicate minerals and metal precipitates by a bacterial cell surface ( Bacillus subtilis) and implications on global cycling of silicon. Chem Geol 116:261–280
    [Google Scholar]
  332. Vachon R. P. D., Tyagi J., Auclair C., Wilkinson K. J. 1994; Chemical and biological leaching of aluminium from red mud. Environ Sci Technol 28:26–30
    [Google Scholar]
  333. Valls M., de Lorenzo V. 2002; Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338
    [Google Scholar]
  334. Valls M., Atrian S., de Lorenzo V., Fernandez L. A. 2000; Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665
    [Google Scholar]
  335. Van Breemen N., Lundstrom U. S., Jongmans A. G. 2000; Do plants drive podzolization via rock-eating mycorrhizal fungi?. Geoderma 94:163–171
    [Google Scholar]
  336. Van der Lelie D., Schwitzguebel J. P., Glass D. J., Vangronsveld J., Baker A. 2001; Assessing phytoremediation's progress in the United States and Europe. Environ Sci Technol 35:446A–452A
    [Google Scholar]
  337. Van Ho A., Ward D. M., Kaplan J. 2002; Transition metal transport in yeast. Annu Rev Microbiol 56:237–261
    [Google Scholar]
  338. Vaughan D. J., Pattrick R. A. D., Wogelius R. A. 2002; Minerals, metals and molecules: ore and environmental mineralogy in the new millenium. Mineral Mag 66:653–676
    [Google Scholar]
  339. Verrecchia E. P. 2000; Fungi and sediments. In Microbial Sediments pp 69–75 Edited by Riding R. E., Awramik S. M. Berlin: Springer;
    [Google Scholar]
  340. Verrecchia E. P., Dumont J. L., Rolko K. E. 1990; Do fungi building limestones exist in semi-arid regions?. Naturwissenschaften 77:584–586
    [Google Scholar]
  341. Verrecchia E. P., Braissant O., Cailleau G. Edited by 2006; The oxalate–carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria. In Fungi in Biogeochemical Cycles pp 289–310 Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  342. Violante A., Huang P. M., Gadd G. M. (editors) 2008 Biophysico-chemical Processes of Heavy Metals and Metalloids in Soil Environments Chichester: Wiley;
  343. Volesky B. 1990 Biosorption of Heavy Metals Boca Raton, FL: CRC Press;
  344. Walker J. J., Pace N. R. 2007; Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347
    [Google Scholar]
  345. Wall J. D., Krumholz L. R. 2006; Uranium reduction. Annu Rev Microbiol 60:149–166
    [Google Scholar]
  346. Wallander H., Mahmood S., Hagerberg D., Johansson L., Pallon J. 2003; Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65
    [Google Scholar]
  347. Wang J., Chen C. 2009; Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226
    [Google Scholar]
  348. Wang C. L., Lum A. M., Ozuna S. C., Clark D. S., Keasling J. D. 2001; Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. Appl Microbiol Biotechnol 56:425–430
    [Google Scholar]
  349. Warren L. A., Haack E. A. 2001; Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54:261–320
    [Google Scholar]
  350. Warscheid T., Becker T. W., Resende M. A. 1996; Biodeterioration of stone: a comparison of (sub-)tropical and moderate climate zones. In Biodegradation and Biodeterioration in Latin America pp 63–64 Edited by Gaylarde C. C., de Sa E. L. S., Gaylarde P. M. Porto Alegre: Mircen/UNEP/UNESCO/ICRO-FEPAGRO/UFRGS;
    [Google Scholar]
  351. Watson J. H. P., Ellwood D. C., Deng Q. X., Mikhalovsky S., Hayter C. E., Evans J. 1995; Heavy metal adsorption on bacterially-produced FeS. Min Eng 8:1097–1108
    [Google Scholar]
  352. Watson J. H. P., Cressey B. A., Roberts A. P., Ellwood D. C., Charnock J. M., Soper A. K. 2000; Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. J Magn Magn Mater 214:13–30
    [Google Scholar]
  353. Weaver T. L., Dugan P. R. 1972; Enhancement of bacteria methane oxidation by clay minerals. Nature 237:518
    [Google Scholar]
  354. Wengel M., Kothe E., Schmidt C. M., Heide K., Gleixner G. 2006; Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci Total Environ 367:383–393
    [Google Scholar]
  355. Wenzel C. L., Ashford A. E., Summerell B. A. 1994; Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of warratah ( Telopea speciosissima (Sm.) R. Br.). New Phytol 128:487–496
    [Google Scholar]
  356. White C., Gadd G. M. 1998; Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415
    [Google Scholar]
  357. White C., Gadd G. M. 2000; Copper accumulation by sulphate-reducing bacterial biofilms and effects on growth. FEMS Microbiol Lett 183:313–318
    [Google Scholar]
  358. White C., Sayer J. A., Gadd G. M. 1997; Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol Rev 20:503–516
    [Google Scholar]
  359. White C., Sharman A. K., Gadd G. M. 1998; An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 16:572–575
    [Google Scholar]
  360. White C., Dennis J. S., Gadd G. M. 2003; A mathematical process model for cadmium precipitation by sulphate-reducing bacterial biofilms. Biodegradation 14:139–151
    [Google Scholar]
  361. Whitelaw M. A., Harden T. J., Helyar K. R. 1999; Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665
    [Google Scholar]
  362. Wright J. S. 2002; Geomorphology and stone conservation: sandstone decay in Stoke-on-Trent. Struct Surv 20:50–61
    [Google Scholar]
  363. Yee N., Kobayashi D. Y. 2008; Molecular genetics of selenate reduction by Enterobacter cloacae SLD1a-1. Adv Appl Microbiol 64:107–123
    [Google Scholar]
  364. Yong P., Mikheenko I. P., Deplanche K., Sargent F., Macaskie L. E. 2009; Biorecovery of precious metals from wastes and conversion into fuel cell catalyst for electricity production. Adv Materials Res 71:73729–732
    [Google Scholar]
  365. Zhdanova N. N., Zakharchenko V. A., Vember V. V., Nakonechnaya L. T. 2000; Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037143-0
Loading
/content/journal/micro/10.1099/mic.0.037143-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error