1887

Abstract

An locus, related to the multiple loci of , is conserved in all sequenced genomes, where it is associated with the developmental regulatory gene . Here we demonstrate that the operon, comprising part of the locus, has a novel morphogenetic function in the model species . This operon encodes two proteins belonging to the WXG-100 superfamily that can form a heterodimer and are secreted in the absence of signal sequences. A mutation in results in a delay in sporulation, with eventual development of aerial hyphae with chains of abnormally sized spore compartments possessing irregular DNA contents. During early sporulation, expression of the operon is elevated in a mutant. Other genes in the locus, notably and , encode components of a type VII secretion system. Disruption of either of these genes prevents secretion of EsxAB but has no effect on sporulation. To explain the morphogenetic function of EsxAB, we propose that the heterodimer sequesters a regulator of expression of genes involved in nucleoid organization during sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037069-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1719.html?itemId=/content/journal/micro/10.1099/mic.0.037069-0&mimeType=html&fmt=ahah

References

  1. Abdallah A. M., Gey van Pittius N. C., Champion P. A., Cox J., Luirink J., Vandenbroucke-Grauls C. M., Appelmelk B. J., Bitter W. 2007; Type VII secretion – mycobacteria show the way. Nat Rev Microbiol 5:883–891
    [Google Scholar]
  2. Abramoff M. D., Magelhaes P. J., Ram S. J. 2004; Image processing with ImageJ. Biophotonics International 11:36–42
    [Google Scholar]
  3. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523
    [Google Scholar]
  4. Bishop A., Fielding S., Dyson P., Herron P. 2004; Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res 14:893–900
    [Google Scholar]
  5. Bitter W., Houben E. N., Bottai D., Brodin P., Brown E. J., Cox J. S., Derbyshire K., Fortune S. M., Gao L. Y. other authors 2009; Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog 5:e1000507
    [Google Scholar]
  6. Brodin P., Eiglmeier K., Marmiesse M., Billault A., Garnier T., Niemann S., Cole S. T., Brosch R. 2002; Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun 70:5568–5578
    [Google Scholar]
  7. Brodin P., Majlessi L., Marsollier L., de Jonge M. I., Bottai D., Demangel C., Hinds J., Neyrolles O., Butcher P. D. other authors 2006; Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun 74:88–98
    [Google Scholar]
  8. Burts M. L., Williams W. A., DeBord K., Missiakas D. M. 2005; EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102:1169–1174
    [Google Scholar]
  9. Burts M. L., DeDent A. C., Missiakas D. M. 2008; EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol 69:736–746
    [Google Scholar]
  10. Calmette A. 1927 In La Vaccination Preventive Contre la Tuberculose pp 250 Paris: Masson et Cie;
    [Google Scholar]
  11. Champion P. A., Stanley S. A., Champion M. M., Brown E. J., Cox J. S. 2006; C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:1632–1636
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  13. Dedrick R. M., Wildschutte H., McCormick J. R. 2009; Genetic interactions of smc, ftsK, and parB genes in Streptomyces coelicolor and their developmental genome segregation phenotypes. J Bacteriol 191:320–332
    [Google Scholar]
  14. Del Sol R., Mullins J. G., Grantcharova N., Flardh K., Dyson P. 2006; Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188:1540–1550
    [Google Scholar]
  15. Del Sol R., Armstrong I., Wright C., Dyson P. 2007; Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells. J Bacteriol 189:2219–2225
    [Google Scholar]
  16. Facey P. D., Hitchings M. D., Saavedra-Garcia P., Fernandez-Martinez L., Dyson P. J., Del Sol R. 2009; Streptomyces coelicolor Dps-like proteins: differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Mol Microbiol 73:1186–1202
    [Google Scholar]
  17. Fernandez-Martinez L., Bishop A., Parkes L., Del Sol R., Salerno P., Sevcikova B., Mazurakova V., Kormanec J., Dyson P. 2009; Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. Mol Microbiol 71:1250–1262
    [Google Scholar]
  18. Flardh K., Buttner M. J. 2009; Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49
    [Google Scholar]
  19. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229
    [Google Scholar]
  20. Gey Van Pittius N.C., Gamieldien J., Hide W., Brown G.D., Siezen R.J., Beyers A.D. 2001; The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol 2: RESEARCH0044
    [Google Scholar]
  21. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51:359–370
    [Google Scholar]
  22. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C. other authors 2003; The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A 100:12420–12425
    [Google Scholar]
  23. Karimova G., Pidoux J., Ullmann A., Ladant D. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756
    [Google Scholar]
  24. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  25. Kois A., Swiatek M., Jakimowicz D., Zakrzewska-Czerwinska J. 2009; SMC protein-dependent chromosome condensation during aerial hyphal development in Streptomyces. J Bacteriol 191:310–319
    [Google Scholar]
  26. Lightbody K. L., Renshaw P. S., Collins M. L., Wright R. L., Hunt D. M., Gordon S. V., Hewinson R. G., Buxton R. S., Williamson R. A., Carr M. D. 2004; Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol Lett 238:255–262
    [Google Scholar]
  27. Lightbody K. L., Ilghari D., Waters L. C., Carey G., Bailey M. A., Williamson R. A., Renshaw P. S., Carr M. D. 2008; Molecular features governing the stability and specificity of functional complex formation by Mycobacterium tuberculosis CFP-10/ESAT-6 family proteins. J Biol Chem 283:17681–17690
    [Google Scholar]
  28. MacGurn J. A., Cox J. S. 2007; A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun 75:2668–2678
    [Google Scholar]
  29. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282
    [Google Scholar]
  30. Mishig-Ochiriin T., Won H. S., Lee C. J., Kang S. O., Lee B. J. 2003; Biophysical and structural property of the putative DNA-binding protein, BldB, from Streptomyces lividans. Biopolymers 69:343–350
    [Google Scholar]
  31. Mistry B. V., Del Sol R., Wright C., Findlay K., Dyson P. 2008; FtsW is a dispensable cell division protein required for Z-ring stabilization during sporulation septation in Streptomyces coelicolor. J Bacteriol 190:5555–5566
    [Google Scholar]
  32. Pallen M. J. 2002; The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system?. Trends Microbiol 10:209–212
    [Google Scholar]
  33. Pope M. K., Green B., Westpheling J. 1998; The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol 180:1556–1562
    [Google Scholar]
  34. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T. 2002; Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717
    [Google Scholar]
  35. Raghavan S., Manzanillo P., Chan K., Dovey C., Cox J. S. 2008; Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature 454:717–721
    [Google Scholar]
  36. Renshaw P. S., Lightbody K. L., Veverka V., Muskett F. W., Kelly G., Frenkiel T. A., Gordon S. V., Hewinson R. G., Burke B. other authors 2005; Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J 24:2491–2498
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schwedock J., McCormick J. R., Angert E. R., Nodwell J. R., Losick R. 1997; Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol 25:847–858
    [Google Scholar]
  39. Simeone R., Bottai D., Brosch R. 2009; ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12:4–10
    [Google Scholar]
  40. Stanley S. A., Raghavan S., Hwang W. W., Cox J. S. 2003; Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 100:13001–13006
    [Google Scholar]
  41. Stanley S. A., Johndrow J. E., Manzanillo P., Cox J. S. 2007; The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152
    [Google Scholar]
  42. Volkman H. E., Clay H., Beery D., Chang J. C., Sherman D. R., Ramakrishnan L. 2004; Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2:e367
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037069-0
Loading
/content/journal/micro/10.1099/mic.0.037069-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error