1887

Abstract

An locus, related to the multiple loci of , is conserved in all sequenced genomes, where it is associated with the developmental regulatory gene . Here we demonstrate that the operon, comprising part of the locus, has a novel morphogenetic function in the model species . This operon encodes two proteins belonging to the WXG-100 superfamily that can form a heterodimer and are secreted in the absence of signal sequences. A mutation in results in a delay in sporulation, with eventual development of aerial hyphae with chains of abnormally sized spore compartments possessing irregular DNA contents. During early sporulation, expression of the operon is elevated in a mutant. Other genes in the locus, notably and , encode components of a type VII secretion system. Disruption of either of these genes prevents secretion of EsxAB but has no effect on sporulation. To explain the morphogenetic function of EsxAB, we propose that the heterodimer sequesters a regulator of expression of genes involved in nucleoid organization during sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037069-0
2010-06-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1719.html?itemId=/content/journal/micro/10.1099/mic.0.037069-0&mimeType=html&fmt=ahah

References

  1. Abdallah A. M., Gey van Pittius N. C., Champion P. A., Cox J., Luirink J., Vandenbroucke-Grauls C. M., Appelmelk B. J., Bitter W.. 2007; Type VII secretion – mycobacteria show the way. Nat Rev Microbiol5:883–891
    [Google Scholar]
  2. Abramoff M. D., Magelhaes P. J., Ram S. J.. 2004; Image processing with ImageJ. Biophotonics International11:36–42
    [Google Scholar]
  3. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M.. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science284:1520–1523
    [Google Scholar]
  4. Bishop A., Fielding S., Dyson P., Herron P.. 2004; Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res14:893–900
    [Google Scholar]
  5. Bitter W., Houben E. N., Bottai D., Brodin P., Brown E. J., Cox J. S., Derbyshire K., Fortune S. M., Gao L. Y.. other authors 2009; Systematic genetic nomenclature for type VII secretion systems. PLoS Pathog5:e1000507
    [Google Scholar]
  6. Brodin P., Eiglmeier K., Marmiesse M., Billault A., Garnier T., Niemann S., Cole S. T., Brosch R.. 2002; Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun70:5568–5578
    [Google Scholar]
  7. Brodin P., Majlessi L., Marsollier L., de Jonge M. I., Bottai D., Demangel C., Hinds J., Neyrolles O., Butcher P. D.. other authors 2006; Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect Immun74:88–98
    [Google Scholar]
  8. Burts M. L., Williams W. A., DeBord K., Missiakas D. M.. 2005; EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A102:1169–1174
    [Google Scholar]
  9. Burts M. L., DeDent A. C., Missiakas D. M.. 2008; EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol69:736–746
    [Google Scholar]
  10. Calmette A.. 1927; In La Vaccination Preventive Contre la Tuberculose pp250 Paris: Masson et Cie;
    [Google Scholar]
  11. Champion P. A., Stanley S. A., Champion M. M., Brown E. J., Cox J. S.. 2006; C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science313:1632–1636
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  13. Dedrick R. M., Wildschutte H., McCormick J. R.. 2009; Genetic interactions of smc, ftsK, and parB genes in Streptomyces coelicolor and their developmental genome segregation phenotypes. J Bacteriol191:320–332
    [Google Scholar]
  14. Del Sol R., Mullins J. G., Grantcharova N., Flardh K., Dyson P.. 2006; Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol188:1540–1550
    [Google Scholar]
  15. Del Sol R., Armstrong I., Wright C., Dyson P.. 2007; Characterization of changes to the cell surface during the life cycle of Streptomyces coelicolor: atomic force microscopy of living cells. J Bacteriol189:2219–2225
    [Google Scholar]
  16. Facey P. D., Hitchings M. D., Saavedra-Garcia P., Fernandez-Martinez L., Dyson P. J., Del Sol R.. 2009; Streptomyces coelicolor Dps-like proteins: differential dual roles in response to stress during vegetative growth and in nucleoid condensation during reproductive cell division. Mol Microbiol73:1186–1202
    [Google Scholar]
  17. Fernandez-Martinez L., Bishop A., Parkes L., Del Sol R., Salerno P., Sevcikova B., Mazurakova V., Kormanec J., Dyson P.. 2009; Osmoregulation in Streptomyces coelicolor: modulation of SigB activity by OsaC. Mol Microbiol71:1250–1262
    [Google Scholar]
  18. Flardh K., Buttner M. J.. 2009; Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol7:36–49
    [Google Scholar]
  19. Flett F., Mersinias V., Smith C. P.. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett155:223–229
    [Google Scholar]
  20. Gey Van Pittius N.C., Gamieldien J., Hide W., Brown G.D., Siezen R.J., Beyers A.D.. 2001; The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol2: RESEARCH0044
    [Google Scholar]
  21. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R.. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol51:359–370
    [Google Scholar]
  22. Hsu T., Hingley-Wilson S. M., Chen B., Chen M., Dai A. Z., Morin P. M., Marks C. B., Padiyar J., Goulding C.. other authors 2003; The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci U S A100:12420–12425
    [Google Scholar]
  23. Karimova G., Pidoux J., Ullmann A., Ladant D.. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756
    [Google Scholar]
  24. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. 2000; Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
  25. Kois A., Swiatek M., Jakimowicz D., Zakrzewska-Czerwinska J.. 2009; SMC protein-dependent chromosome condensation during aerial hyphal development in Streptomyces. J Bacteriol191:310–319
    [Google Scholar]
  26. Lightbody K. L., Renshaw P. S., Collins M. L., Wright R. L., Hunt D. M., Gordon S. V., Hewinson R. G., Buxton R. S., Williamson R. A., Carr M. D.. 2004; Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol Lett238:255–262
    [Google Scholar]
  27. Lightbody K. L., Ilghari D., Waters L. C., Carey G., Bailey M. A., Williamson R. A., Renshaw P. S., Carr M. D.. 2008; Molecular features governing the stability and specificity of functional complex formation by Mycobacterium tuberculosis CFP-10/ESAT-6 family proteins. J Biol Chem283:17681–17690
    [Google Scholar]
  28. MacGurn J. A., Cox J. S.. 2007; A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect Immun75:2668–2678
    [Google Scholar]
  29. Mahairas G. G., Sabo P. J., Hickey M. J., Singh D. C., Stover C. K.. 1996; Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol178:1274–1282
    [Google Scholar]
  30. Mishig-Ochiriin T., Won H. S., Lee C. J., Kang S. O., Lee B. J.. 2003; Biophysical and structural property of the putative DNA-binding protein, BldB, from Streptomyces lividans. Biopolymers69:343–350
    [Google Scholar]
  31. Mistry B. V., Del Sol R., Wright C., Findlay K., Dyson P.. 2008; FtsW is a dispensable cell division protein required for Z-ring stabilization during sporulation septation in Streptomyces coelicolor. J Bacteriol190:5555–5566
    [Google Scholar]
  32. Pallen M. J.. 2002; The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system?. Trends Microbiol10:209–212
    [Google Scholar]
  33. Pope M. K., Green B., Westpheling J.. 1998; The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. J Bacteriol180:1556–1562
    [Google Scholar]
  34. Pym A. S., Brodin P., Brosch R., Huerre M., Cole S. T.. 2002; Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol46:709–717
    [Google Scholar]
  35. Raghavan S., Manzanillo P., Chan K., Dovey C., Cox J. S.. 2008; Secreted transcription factor controls Mycobacterium tuberculosis virulence. Nature454:717–721
    [Google Scholar]
  36. Renshaw P. S., Lightbody K. L., Veverka V., Muskett F. W., Kelly G., Frenkiel T. A., Gordon S. V., Hewinson R. G., Burke B.. other authors 2005; Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J24:2491–2498
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Schwedock J., McCormick J. R., Angert E. R., Nodwell J. R., Losick R.. 1997; Assembly of the cell division protein FtsZ into ladder-like structures in the aerial hyphae of Streptomyces coelicolor. Mol Microbiol25:847–858
    [Google Scholar]
  39. Simeone R., Bottai D., Brosch R.. 2009; ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol12:4–10
    [Google Scholar]
  40. Stanley S. A., Raghavan S., Hwang W. W., Cox J. S.. 2003; Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A100:13001–13006
    [Google Scholar]
  41. Stanley S. A., Johndrow J. E., Manzanillo P., Cox J. S.. 2007; The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol178:3143–3152
    [Google Scholar]
  42. Volkman H. E., Clay H., Beery D., Chang J. C., Sherman D. R., Ramakrishnan L.. 2004; Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol2:e367
    [Google Scholar]
  43. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037069-0
Loading
/content/journal/micro/10.1099/mic.0.037069-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error