Extracellular enzymes affect biofilm formation of mucoid Free

Abstract

secretes a variety of hydrolases, many of which contribute to virulence or are thought to play a role in the nutrition of the bacterium. As most studies concerning extracellular enzymes have been performed on planktonic cultures of non-mucoid strains, knowledge of the potential role of these enzymes in biofilm formation in mucoid (alginate-producing) remains limited. Here we show that mucoid produces extracellular hydrolases during biofilm growth. Overexpression of the extracellular lipases LipA and LipC, the esterase EstA and the proteolytic elastase LasB from plasmids revealed that some of these hydrolases affected the composition and physicochemical properties of the extracellular polymeric substances (EPS). While no influence of LipA was observed, the overexpression of and led to increased concentrations of extracellular rhamnolipids with enhanced levels of mono-rhamnolipids, elevated amounts of total carbohydrates and decreased alginate concentrations, resulting in increased EPS hydrophobicity and viscosity. Moreover, we observed an influence of the enzymes on cellular motility. Overexpression of resulted in a loss of twitching motility, although it enhanced the ability to swim and swarm. The -overexpression strain showed an overall enhanced motility compared with the parent strain. Moreover, the EstA- and LasB-overproduction strains completely lost the ability to form 3D biofilms, whereas the overproduction of LipC increased cell aggregation and the heterogeneity of the biofilms formed. Overall, these findings indicate that directly or indirectly, the secreted enzymes EstA, LasB and LipC can influence the formation and architecture of mucoid biofilms as a result of changes in EPS composition and properties, as well as the motility of the cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037036-0
2010-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2239.html?itemId=/content/journal/micro/10.1099/mic.0.037036-0&mimeType=html&fmt=ahah

References

  1. Al-Tahhan R. A., Sandrin T. R., Bodour A. A., Maier R. M. 2000; Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268
    [Google Scholar]
  2. Auerbach I. D., Sorensen C., Hansma H. G., Holden P. A. 2000; Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol 182:3809–3815
    [Google Scholar]
  3. Blumenkrantz N., Asboe-Hansen G. 1973; New method for quantitative determination of uronic acids. Anal Biochem 54:484–489
    [Google Scholar]
  4. Boles B. R., Thoendel M., Singh P. K. 2005; Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223
    [Google Scholar]
  5. Borriello G., Werner E., Roe F., Kim A. M., Ehrlich G. D., Stewart P. S. 2004; Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48:2659–2664
    [Google Scholar]
  6. Borriello G., Richards L., Ehrlich G. D., Stewart P. S. 2006; Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 50:382–384
    [Google Scholar]
  7. Botzenhart K., Döring G. 1993; Ecology and epidemiology of Pseudomonas aeruginosa. In Pseudomonas aeruginosa as an Opportunistic Pathogen pp 1–18 Edited by Campa M., Bendinelli M., Friedman H. New York: Plenum Press;
    [Google Scholar]
  8. Chandrasekaran E. V., BeMiller J. N. 1980; Constituent analysis of glycosaminoglycans. In Methods in Carbohydrate Chemistry, VIII pp 89–96 Edited by Whistler R. L., BeMiller J. N. New York: Academic Press;
    [Google Scholar]
  9. Chang W. S., van de Mortel M., Nielsen L., Nino de Guzman G., Li X., Halverson L. J. 2007; Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189:8290–8299
    [Google Scholar]
  10. Chiang P., Burrows L. L. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol 185:2374–2378
    [Google Scholar]
  11. Ciofu O., Beveridge T. J., Kadurugamuwa J., Walther-Rasmussen J., Høiby N. 2000; Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13
    [Google Scholar]
  12. Connelly M. B., Young G. M., Sloma A. 2004; Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol 186:4159–4167
    [Google Scholar]
  13. Davey M. E., O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867
    [Google Scholar]
  14. Davey M. E., Caiazza N. C., O'Toole G. A. 2003; Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036
    [Google Scholar]
  15. Deretic V., Konyecsni W. M. 1989; Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 171:3680–3688
    [Google Scholar]
  16. Deretic V., Gill J. F., Chakrabarty A. M. 1987; Pseudomonas aeruginosa infection in cystic fibrosis: nucleotide sequence and transcriptional regulation of the algD gene. Nucleic Acids Res 15:4567–4581
    [Google Scholar]
  17. Deziel E., Lepine F., Milot S., Villemur R. 2003; rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013
    [Google Scholar]
  18. Diggle S. P., Stacey R. E., Dodd C., Cámara M., Williams P., Winzer K. 2006; The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 8:1095–1104
    [Google Scholar]
  19. Drenkard E. 2003; Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219
    [Google Scholar]
  20. Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. 1956; Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
    [Google Scholar]
  21. Espinosa-Urgel M. 2003; Resident parking only: rhamnolipids maintain fluid channels in biofilms. J Bacteriol 185:699–700
    [Google Scholar]
  22. Fagerland M. W., Sandvik L. 2009; Performance of five two-sample location tests for skewed distributions with unequal variances. Contemp Clin Trials 30:490–496
    [Google Scholar]
  23. Flemming H.-C., Wingender J. 2003; The crucial role of extracellular polymeric substances in biofilms. In Wastewater Treatment: an Interdisciplinary Approach pp 178–210 Edited by Wuertz S., Bishop P. L., Wilderer P. A. London: IWA Publishing;
    [Google Scholar]
  24. Folders J., Tommassen J., van Loon L. C., Bitter W. 2000; Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol 182:1257–1263
    [Google Scholar]
  25. Frølund B., Palmgren R., Keiding K., Nielsen P. H. 1996; Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758
    [Google Scholar]
  26. Fürste J. P., Pansegrau W., Frank R., Blocker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131
    [Google Scholar]
  27. Gacesa P. 1998; Bacterial alginate biosynthesis – recent progress and future prospects. Microbiology 144:1133–1143
    [Google Scholar]
  28. Galloway D. R. 1991; Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol 5:2315–2321
    [Google Scholar]
  29. Gómez-Suárez C., Pasma J., van der Borden A. J., Wingender J., Flemming H. C., Busscher H. J., van der Mei H. C. 2002; Influence of extracellular polymeric substances on deposition and redeposition of Pseudomonas aeruginosa to surfaces. Microbiology 148:1161–1169
    [Google Scholar]
  30. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: Mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
    [Google Scholar]
  31. Grobe S., Wingender J., Trüper H. G. 1995; Characterization of mucoid Pseudomonas aeruginosa strains isolated from technical water systems. J Appl Bacteriol 79:94–102
    [Google Scholar]
  32. Hamood A. N., Griswold J. A., Duhan C. M. 1996; Production of extracellular virulence factors by Pseudomonas aeruginosa isolates obtained from tracheal, urinary tract, and wound infections. J Surg Res 61:425–432
    [Google Scholar]
  33. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401
    [Google Scholar]
  34. Jaeger K.-E., Schneidinger B., Liebeton L., Haas D., Reetz M. T., Philippou S., Gerritse G., Ransac S., Dijkstra B. W. 1996; Lipase of Pseudomonas aeruginosa: molecular biology and biotechnological application. In Molecular Biology of Pseudomonads pp 319–330 Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  35. Jain S., Ohman D. E. 2004; Alginate biosynthesis. In Pseudomonas , vol. 3 pp 53–83 Edited by Ramos J.-L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  36. Kadurugamuwa J. L., Beveridge T. J. 1995; Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008
    [Google Scholar]
  37. Kamath S., Kapatral V., Chakrabarty A. M. 1998; Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol Microbiol 30:933–941
    [Google Scholar]
  38. Kearns D. B., Bonner P. J., Smith D. R., Shimkets L. J. 2002; An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184:1678–1684
    [Google Scholar]
  39. Kessler E., Safrin M., Gustin J. K., Ohman D. E. 1998; Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem 273:30225–30231
    [Google Scholar]
  40. Kim J., Hahn J. S., Franklin M. J., Stewart P. S., Yoon J. 2009; Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63:129–135
    [Google Scholar]
  41. Klauck E., Becker G., Hengge R. 2005; Proteolyse als Regulationsprinzip in Prokaryoten. BIOspektrum (Heidelb 2:166–168
    [Google Scholar]
  42. Klausen M., Heydorn A., Ragas P., Lamberrtsen L., Aaes-Jrgensen A., Moli S., Tolker-Nielsen T. 2003a; Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524
    [Google Scholar]
  43. Klausen M., Aaes-Jorgensen A., Molin S., Tolker-Nielsen T. 2003b; Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50:61–68
    [Google Scholar]
  44. Köhler T., Curty L. K., Barja F., van Delden C., Pechere J. C. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996
    [Google Scholar]
  45. König B., Jaeger K. E., Sage A. E., Vasil M. L., König W. 1996; Role of Pseudomonas aeruginosa lipase in inflammatory mediator release from human inflammatory effector cells (platelets, granulocytes, and monocytes. Infect Immun 64:3252–3258
    [Google Scholar]
  46. Körstgens V., Flemming H.-C., Wingender J., Borchard W. 2001; Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43:49–57
    [Google Scholar]
  47. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  48. Küpper H., Wingender J., Jaeger K.-E., Flemming H.-C. 1999 Eignung von Fluoresceinestern zur Bestimmung der Esterase-Aktivitäten von Wasserbakterien Tagungsband Jahrestagung der Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker; Regensburg: 1999208–211
    [Google Scholar]
  49. Ledgham F., Soscia C., Chakrabarty A., Lazdunski A., Foglino M. 2003; Global regulation in Pseudomonas aeruginosa: the regulatory protein AlgR2 (AlgQ) acts as a modulator of quorum sensing. Res Microbiol 154:207–213
    [Google Scholar]
  50. Liu D., Golden J. W. 2002; hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC7120. J Bacteriol 184:6873–6881
    [Google Scholar]
  51. Ma L., Jackson K. D., Landry R. M., Parsek M. R., Wozniak D. J. 2006; Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213–8221
    [Google Scholar]
  52. Mah T. F., Pitts B., Pellock B., Walker G. C., Stewart P. S., O'Toole G. A. 2003; A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310
    [Google Scholar]
  53. Maier R. M., Soberón-Chávez G. 2000; Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633
    [Google Scholar]
  54. Martínez A., Ostrovsky P., Nunn D. N. 1999; LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317–326
    [Google Scholar]
  55. Matz C., Bergfeld T., Rice S. A., Kjelleberg S. 2004; Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6:218–226
    [Google Scholar]
  56. McDougald D., Klebensberger J., Tolker-Nielsen T., Webb J. S., Conibear T., Rice S. A., Kirov S. M., Matz C., Kjelleberg S. 2008; Pseudomonas aeruginosa: a model for biofilm formation. In Pseudomonas. Model Organism, Pathogen, Cell Factory pp 215–253 Edited by Rehm B. H. A. Weinheim: Wiley-VCH Verlag;
    [Google Scholar]
  57. Mohr C. D., Rust L., Albus A. M., Iglewski B. H., Deretic V. 1990; Expression patterns of genes encoding elastase and controlling mucoidy – co-ordinate regulation of two virulence factors in Pseudomonas aeruginosa from cystic fibrosis. Mol Microbiol 4:2103–2110
    [Google Scholar]
  58. Neu H. C., Heppel I. A. 1965; The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692
    [Google Scholar]
  59. Nicas T. I., Iglewski B. H. 1986; Production of elastase and other exoproducts by environmental isolates of Pseudomonas aeruginosa. J Clin Microbiol 23:967–969
    [Google Scholar]
  60. Nivens D. E., Ohman D. E., Williams J., Franklin M. J. 2001; Role of alginate and its O-acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183:1047–1057
    [Google Scholar]
  61. Nouwens A. S., Beatson S. A., Whitchurch C. B., Walsh B. J., Schweizer H. P., Mattick J. S., Cordwell S. J. 2003; Proteome analysis of extracellular proteins regulated by the las and rhl quorum sensing systems in Pseudomonas aeruginosa PAO1. Microbiology 149:1311–1322
    [Google Scholar]
  62. Nyström T., Neidhardt F. C. 1996; Effects of overproducing the universal stress protein, UspA, in Escherichia coli K-12. J Bacteriol 178:927–930
    [Google Scholar]
  63. Obernesser H.-J., Döring G., Botzenhart K. 1981; Extrazelluläre Toxine von Pseudomonas aeruginosa. I. Reinigung und Charakterisierung zweier Exoproteasen. Zentralbl Bakteriol A A249:76–88
    [Google Scholar]
  64. Ochsner U. A., Reiser J. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92:6424–6428
    [Google Scholar]
  65. Ochsner U. A., Fiechter A., Reiser J. 1994; Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795
    [Google Scholar]
  66. Ohman D. E., Chakrabarty A. M. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33:142–148
    [Google Scholar]
  67. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  68. Overhage J., Bains M., Brazas M. D., Hancock R. E. 2008; Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679
    [Google Scholar]
  69. Park S., Galloway D. R. 1998; Pseudomonas aeruginosa LasD processes the inactive LasA precursor to the active protease form. Arch Biochem Biophys 357:8–12
    [Google Scholar]
  70. Pearson J. P., Pesci E. C., Iglewski B. H. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767
    [Google Scholar]
  71. Pesci E. C., Iglewski B. H. 1999; Quorum sensing in Pseudomonas aeruginosa. In Cell–Cell Signaling in Bacteria pp 147–155 Edited by Dunny G. M., Winans S. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  72. Prestidge L., Gage V., Spizizien J. 1971; Protease activities during the course of sporulation in Bacillus subtilis. J Bacteriol 107:815–823
    [Google Scholar]
  73. Pringle J. H., Fletcher M. M. 1986; Influence of substratum hydration and adsorbed macromolecules on bacterial attachment to surfaces. Appl Environ Microbiol 51:1321–1325
    [Google Scholar]
  74. Rashid M. H., Kornberg A. 2000; Inorganic phosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:4885–4890
    [Google Scholar]
  75. Rendell N. B., Taylor G. W., Somerville M., Todd H., Wilson R., Cole P. J. 1990; Characterisation of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193
    [Google Scholar]
  76. Rosenau F., Jaeger K.-E. 2003; Overexpression and secretion of biocatalysts in Pseudomonas. In Enzyme Functionality: Design, Engineering, and Screening pp 617–631 Edited by Sevendsen A. New York: Marcel Dekker;
    [Google Scholar]
  77. Rosenau F., Tommassen J., Jaeger K.-E. 2004; Lipase-specific foldases. ChemBioChem 5:152–161
    [Google Scholar]
  78. Rosenberg M., Gutnick D., Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33
    [Google Scholar]
  79. Rumbaugh K. P., Griswold J. A., Hamood A. N. 1999; Pseudomonas aeruginosa strains obtained from patients with tracheal, urinary tract and wound infection: variations in virulence factors and virulence genes. J Hosp Infect 43:211–218
    [Google Scholar]
  80. Ryder C., Byrd M., Wozniak D. J. 2007; Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10:644–648
    [Google Scholar]
  81. Sarkisova S., Patrauchan M. A., Berglund D., Nivens D. E., Franklin M. J. 2005; Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 187:4327–4337
    [Google Scholar]
  82. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  83. Sauer K., Cullen M. C., Rickard A. H., Zeef L. A., Davies D. G., Gilbert P. 2004; Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326
    [Google Scholar]
  84. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biol/Technology 1:784–791
    [Google Scholar]
  85. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764
    [Google Scholar]
  86. Steinberger R. E., Allen A. R., Hansa H. G., Holden P. A. 2002; Elongation correlates with nutrient deprivation in Pseudomonas aeruginosa unsaturated biofilms. Microb Ecol 43:416–423
    [Google Scholar]
  87. Stoodley P., Sauer K., Davies D. G., Costerton J. W. 2002; Biofilms as complex differentiated communities. Annu Rev Microbiol 56:187–209
    [Google Scholar]
  88. Syldatk C., Lang S., Wagner F., Wray V., Witte L. 1985; Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Z Naturforsch [C] 40:51–60
    [Google Scholar]
  89. Tielen P., Strathmann M., Jaeger K.-E., Flemming H.-C., Wingender J. 2005; Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res 160:165–176
    [Google Scholar]
  90. Tielker D., Hacker S., Loris R., Strathmann M., Wingender J., Wilhelm S., Rosenau F., Jaeger K.-E. 2005; Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151:1313–1323
    [Google Scholar]
  91. van Delden C. 2004; Virulence factors in Pseudomonas aeruginosa. In Pseudomonas vol. 2 pp 3–45 Edited by Ramos J.-L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  92. Vu T. H., Werb Z. 2000; Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133
    [Google Scholar]
  93. Waite R. D., Papakonstantinopoulou A., Littler E., Curtis M. A. 2005; Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187:6571–6576
    [Google Scholar]
  94. Wehmhöner D., Häussler S., Tümmler B., Jänsch L., Bredenbruch F., Wehland J., Steinmetz I. 2003; Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J Bacteriol 185:5807–5814
    [Google Scholar]
  95. Werner E., Roe F., Bugnicourt A., Franklin M. J., Heydorn A., Molin S., Pitts B., Stewart P. S. 2004; Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196
    [Google Scholar]
  96. Wilhelm S., Tommassen J., Jaeger K.-E. 1999; A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986
    [Google Scholar]
  97. Wilhelm S., Gdynia A., Tielen P., Rosenau F., Jaeger K.-E. 2007a; The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189:6695–6703
    [Google Scholar]
  98. Wilhelm S., Rosenau F., Becker S., Buest S., Hausmann S., Kolmar H., Jaeger K.-E. 2007b; Functional cell-surface display of a lipase-specific chaperone. ChemBioChem 8:55–60
    [Google Scholar]
  99. Wingender J. 1990; Interactions of alginate with exoenzymes. In Pseudomonas Infection and Alginates. Biochemistry, Genetics and Pathology pp 160–180 Edited by Gacesa P., Russell N. J. London: Chapman & Hall;
    [Google Scholar]
  100. Wingender J., Jaeger K.-E. 2002; Extracellular enzymes in biofilms. In Encyclopedia of Environmental Microbiology vol 3 pp 1207–1223 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  101. Wingender J., Neu T., Flemming H.-C. 1999; What are bacterial extracellular polymeric substances?. In Microbial Extracellular Polymeric Substances pp 1–15 Edited by Wingender J., Neu T., Flemming H.-C. Berlin, Heidelberg, New York: Springer-Verlag;
    [Google Scholar]
  102. Wingender J., Strathmann M., Rode A., Leis A., Flemming H.-C. 2001; Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314
    [Google Scholar]
  103. Winkler U. K., Stuckmann M. 1979; Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670
    [Google Scholar]
  104. Wiriyathanawudhiwong N., Ohtsu I., Li Z. D., Mori H., Takagi H. 2009; The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81:903–913
    [Google Scholar]
  105. Zhang Y., Miller R. M. 1994; Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037036-0
Loading
/content/journal/micro/10.1099/mic.0.037036-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed