1887

Abstract

cgR_2930 () encodes a transcriptional regulator of the ArsR family. Its gene product, CyeR, was shown here to repress the expression of and the cgR_2931 ()–cgR_2932 operon, which is located upstream of in the opposite orientation. The gene encodes an Old Yellow Enzyme family protein, members of which have been implicated in the oxidative stress response. CyeR binds to the intergenic region between and . Expression of and is induced by oxidative stress, and the DNA-binding activity of CyeR is impaired by oxidants such as diamide and HO. CyeR contains two cysteine residues, Cys-36 and Cys-43. Whereas mutation of the former (C36A) has no effect on the redox regulation of CyeR activity, mutating the latter (C43A, C43S) abolishes the DNA-binding activity of CyeR. Cys-43 of CyeR and its C36A derivative are modified upon treatment with diamide, suggesting an important role for Cys-43 in the redox regulation of CyeR activity. It is concluded that CyeR is a redox-sensing transcriptional regulator that controls expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036913-0
2010-05-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1335.html?itemId=/content/journal/micro/10.1099/mic.0.036913-0&mimeType=html&fmt=ahah

References

  1. Baumbach, J., Wittkop, T., Kleindt, C. K. & Tauch, A. ( 2009; ). Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4, 992–1005.[CrossRef]
    [Google Scholar]
  2. Blehert, D. S., Fox, B. G. & Chambliss, G. H. ( 1999; ). Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 181, 6254–6263.
    [Google Scholar]
  3. Brigé, A., Van den Hemel, D., Carpentier, W., De Smet, L. & Van Beeumen, J. J. ( 2006; ). Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differences in physiological function. Biochem J 394, 335–344.[CrossRef]
    [Google Scholar]
  4. Brune, I., Brinkrolf, K., Kalinowski, J., Pühler, A. & Tauch, A. ( 2005; ). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6, 86 [CrossRef]
    [Google Scholar]
  5. den Hengst, C. D. & Buttner, M. J. ( 2008; ). Redox control in actinobacteria. Biochim Biophys Acta 1780, 1201–1216.[CrossRef]
    [Google Scholar]
  6. Ehira, S., Shirai, T., Teramoto, H., Inui, M. & Yukawa, H. ( 2008; ). Group 2 sigma factor SigB of Corynebacterium glutamicum positively regulates glucose metabolism under conditions of oxygen deprivation. Appl Environ Microbiol 74, 5146–5152.[CrossRef]
    [Google Scholar]
  7. Ehira, S., Ogino, H., Teramoto, H., Inui, M. & Yukawa, H. ( 2009a; ). Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284, 16736–16742.[CrossRef]
    [Google Scholar]
  8. Ehira, S., Teramoto, H., Inui, M. & Yukawa, H. ( 2009b; ). Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. J Bacteriol 191, 2964–2972.[CrossRef]
    [Google Scholar]
  9. Fitzpatrick, T. B., Amrhein, N. & Macheroux, P. ( 2003; ). Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278, 19891–19897.[CrossRef]
    [Google Scholar]
  10. Fuangthong, M. & Helmann, J. D. ( 2002; ). The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci U S A 99, 6690–6695.[CrossRef]
    [Google Scholar]
  11. Fuangthong, M., Atichartpongkul, S., Mongkolsuk, S. & Helmann, J. D. ( 2001; ). OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183, 4134–4141.[CrossRef]
    [Google Scholar]
  12. Hahn, J.-S., Oh, S.-Y. & Roe, J.-H. ( 2002; ). Role of OxyR as a peroxide-sensing positive regulator in Streptomyces coelicolor A3(2). J Bacteriol 184, 5214–5222.[CrossRef]
    [Google Scholar]
  13. Helmann, J. D., Wu, M. F. W., Gaballa, A., Kobel, P. A., Morshedi, M. M., Fawcett, P. & Paddon, C. ( 2003; ). The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185, 243–253.[CrossRef]
    [Google Scholar]
  14. Hermann, T. ( 2003; ). Industrial production of amino acids by coryneform bacteria. J Biotechnol 104, 155–172.[CrossRef]
    [Google Scholar]
  15. Ikeda, M. & Nakagawa, S. ( 2003; ). The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62, 99–109.[CrossRef]
    [Google Scholar]
  16. Inui, M., Kawaguchi, H., Murakami, S., Vertès, A. A. & Yukawa, H. ( 2004a; ). Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8, 243–254.[CrossRef]
    [Google Scholar]
  17. Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertès, A. A. & Yukawa, H. ( 2004b; ). Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182–196.[CrossRef]
    [Google Scholar]
  18. Inui, M., Suda, M., Okino, S., Nonaka, H., Puskás, L. G., Vertès, A. A. & Yukawa, H. ( 2007; ). Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153, 2491–2504.[CrossRef]
    [Google Scholar]
  19. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  20. Kim, T. H., Kim, H. J., Park, J. S., Kim, Y., Kim, P. & Lee, H. S. ( 2005; ). Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem Biophys Res Commun 331, 1542–1547.[CrossRef]
    [Google Scholar]
  21. Kitzing, K., Fitzpatrick, T. B., Wilken, C., Sawa, J., Bourenkov, G. P., Macheroux, P. & Clausen, T. ( 2005; ). The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of Old Yellow Enzymes. J Biol Chem 280, 27904–27913.[CrossRef]
    [Google Scholar]
  22. Lee, J. W., Soonsanga, S. & Helmann, J. D. ( 2007; ). A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci U S A 104, 8743–8748.[CrossRef]
    [Google Scholar]
  23. Leelakriangsak, M., Huyen, N. T., Töwe, S., van Duy, N., Becher, D., Hecker, M., Antelmann, H. & Zuber, P. ( 2008; ). Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis. Mol Microbiol 67, 1108–1124.[CrossRef]
    [Google Scholar]
  24. Mishra, A. K., Alderwick, L. J., Rittmann, D., Tatituri, R. V., Nigou, J., Gilleron, M., Eggeling, L. & Besra, G. S. ( 2007; ). Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol Microbiol 65, 1503–1517.[CrossRef]
    [Google Scholar]
  25. Nakunst, D., Larisch, C., Hüser, A. T., Tauch, A., Pühler, A. & Kalinowski, J. ( 2007; ). The extracytoplasmic function-type sigma factor SigM of Corynebacterium glutamicum ATCC 13032 is involved in transcription of disulfide stress-related genes. J Bacteriol 189, 4696–4707.[CrossRef]
    [Google Scholar]
  26. Okino, S., Noburyu, R., Suda, M., Jojima, T., Inui, M. & Yukawa, H. ( 2008a; ). An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81, 459–464.[CrossRef]
    [Google Scholar]
  27. Okino, S., Suda, M., Fujikura, K., Inui, M. & Yukawa, H. ( 2008b; ). Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78, 449–454.[CrossRef]
    [Google Scholar]
  28. Paget, M. S. B. & Buttner, M. J. ( 2003; ). Thiol-based regulatory switches. Annu Rev Genet 37, 91–121.[CrossRef]
    [Google Scholar]
  29. Suzuki, N., Okai, N., Nonaka, H., Tsuge, Y., Inui, M. & Yukawa, H. ( 2006; ). High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72, 3750–3755.[CrossRef]
    [Google Scholar]
  30. Terasawa, M. & Yukawa, H. ( 1993; ). Industrial production of biochemicals by native immobilization. In Industrial Application of Immobilized Biocatalysts, pp. 37–52. Edited by A. Tanaka, O. Tosaka & T. Kobayashi. New York: Marcel Dekker, Inc.
  31. Williams, R. E. & Bruce, N. C. ( 2002; ). ‘New uses for an Old Enzyme’ – the Old Yellow Enzyme family of flavoenzymes. Microbiology 148, 1607–1614.
    [Google Scholar]
  32. Yukawa, H., Omumasaba, C. A., Nonaka, H., Kós, P., Okai, N., Suzuki, N., Suda, M., Tsuge, Y., Watanabe, J. & other authors ( 2007; ). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153, 1042–1058.[CrossRef]
    [Google Scholar]
  33. Zheng, M., Åslund, F. & Storz, G. ( 1998; ). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721.[CrossRef]
    [Google Scholar]
  34. Zheng, M., Wang, X., Templeton, L. J., Smulski, D. R., LaRossa, R. A. & Storz, G. ( 2001; ). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183, 4562–4570.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036913-0
Loading
/content/journal/micro/10.1099/mic.0.036913-0
Loading

Data & Media loading...

Supplements

Primers used in this study [PDF](13 KB)

PDF

[PDF](32 KB)

PDF

Amino acid sequence alignment of CyeR homologues [PDF](4000 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error