1887

Abstract

(Pa) and complex (Bcc) lung infections are responsible for much of the mortality in cystic fibrosis (CF). However, little is known about the ecological interactions between these two, often co-infecting, species. This study provides what is believed to be the first report of the intra- and interspecies bacteriocin-like inhibition potential of Pa and Bcc strains recovered from CF patients. A total of 66 strains were screened, and shown to possess bacteriocin-like inhibitory activity (97 % of Pa strains and 68 % of Bcc strains showed inhibitory activity), much of which acted across species boundaries. Further phenotypic and molecular-based assays revealed that the source of this inhibition differs for the two species. In Pa, much of the inhibitory activity is due to the well-known S and RF pyocins. In contrast, Bcc inhibition is due to unknown mechanisms, although RF-like toxins were implicated in some strains. These data suggest that bacteriocin-based inhibition may play a role in governing Pa and Bcc interactions in the CF lung and may, therefore, offer a novel approach to mediating these often fatal infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036848-0
2010-07-01
2024-11-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2058.html?itemId=/content/journal/micro/10.1099/mic.0.036848-0&mimeType=html&fmt=ahah

References

  1. Al-Bakri A. G., Gilbert P., Allison D. G. 2004; Immigration and emigration of Burkholderia cepacia and Pseudomonas aeruginosa between and within mixed biofilm communities. J Appl Microbiol 96:455–463
    [Google Scholar]
  2. Blackwell C. C., Young H., Anderson I. 1979; Sensitivity of Neisseria gonorrhoeae to partially purified R-type pyocines and a possible approach to epidemiological typing. J Med Microbiol 12:321–335
    [Google Scholar]
  3. Bouhaddioui B., Ben Slama K., Gharbi S., Boudabous A. 2002; Epidemiology of clinical and environmental Pseudomonas aeruginosa strains. Ann Microbiol 52:223–235
    [Google Scholar]
  4. Brazas M. D., Hancock R. E. 2005; Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:3222–3227
    [Google Scholar]
  5. Chang W., Small D. A., Toghrol F., Bentley W. E. 2005; Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115
    [Google Scholar]
  6. Cystic Fibrosis Foundation. 2007 Patient Registry 2007 Annual Data Report Bethesda, MD: Cystic Fibrosis Foundation;
  7. de Chial M., Ghysels B., Beatson S. A., Geoffroy V., Meyer J. M., Pattery T., Baysse C., Chablain P., Parsons Y. N. other authors 2003; Identification of type II and type III pyoverdine receptors from Pseudomonas aeruginosa. Microbiology 149:821–831
    [Google Scholar]
  8. Denayer S., Matthijs S., Cornelis P. 2007; Pyocin S2 (Sa) kills Pseudomonas aeruginosa strains via the FpvA type I ferripyoverdine receptor. J Bacteriol 189:7663–7668
    [Google Scholar]
  9. Diez-Gonzalez F. 2007; Use of bacteriocins in livestock. In Research and Applications in Bacteriocins pp 117–129 Edited by Riley M. A., Gillor O. Norwich, UK: Horizon Bioscience;
    [Google Scholar]
  10. Duport C., Baysse C., Michel-Briand Y. 1995; Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J Biol Chem 270:8920–8927
    [Google Scholar]
  11. Emerson J., Rosenfeld M., McNamara S., Ramsey B., Gibson R. L. 2002; Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100
    [Google Scholar]
  12. Farmer J. J. III, Herman L. G. 1969; Epidemiological fingerprinting of Pseudomonas aeruginosa by the production of and sensitivity of pyocin and bacteriophage. Appl Microbiol 18:760–765
    [Google Scholar]
  13. Filiatrault M. J., Munson R. S. Jr, Campagnari A. A. 2001; Genetic analysis of a pyocin-resistant lipooligosaccharide (LOS) mutant of Haemophilus ducreyi: restoration of full-length LOS restores pyocin sensitivity. J Bacteriol 183:5756–5761
    [Google Scholar]
  14. Fyfe J. A., Harris G., Govan J. R. 1984; Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 20:47–50
    [Google Scholar]
  15. Gibson R. L., Burns J. L., Ramsey B. W. 2003; Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951
    [Google Scholar]
  16. Gillor O., Nigro L. M., Riley M. A. 2005; Genetically engineered bacteriocins and their potential as the next generation of antimicrobials. Curr Pharm Des 11:1067–1075
    [Google Scholar]
  17. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
    [Google Scholar]
  18. Govan J. R., Harris G. 1985; Typing of Pseudomonas cepacia by bacteriocin susceptibility and production. J Clin Microbiol 22:490–494
    [Google Scholar]
  19. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183:5395–5401
    [Google Scholar]
  20. Heo Y. J., Chung I. Y., Choi K. B., Cho Y. H. 2007; R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J Microbiol Biotechnol 17:180–185
    [Google Scholar]
  21. Huang C. H., Jang T. N., Liu C. Y., Fung C. P., Yu K. W., Wong W. W. 2001; Characteristics of patients with Burkholderia cepacia bacteremia. J Microbiol Immunol Infect 34:215–219
    [Google Scholar]
  22. Ito S., Kageyama M., Egami F. 1970; Isolation and characterization of pyocins from several strains of Pseudomonas aeruginosa. J Gen Appl Microbiol 16:205–214
    [Google Scholar]
  23. Jones L. F., Zakanycz J. P., Thomas E. T., Farmer J. J. III 1974; Pyocin typing of Pseudomonas aeruginosa: a simplified method. Appl Microbiol 27:400–406
    [Google Scholar]
  24. Jones A. M., Dodd M. E., Govan J. R., Barcus V., Doherty C. J., Morris J., Webb A. K. 2004; Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis. Thorax 59:948–951
    [Google Scholar]
  25. Kageyama M., Shinomiya T., Aihara Y., Kobayashi M. 1979; Characterization of a bacteriophage related to R-type pyocins. J Virol 32:951–957
    [Google Scholar]
  26. Kalish L. A., Waltz D. A., Dovey M., Potter-Bynoe G., McAdam A. J., Lipuma J. J., Gerard C., Goldmann D. 2006; Impact of Burkholderia dolosa on lung function and survival in cystic fibrosis. Am J Respir Crit Care Med 173:421–425
    [Google Scholar]
  27. Kerr B., Riley M. A., Feldman M. W., Bohannan B. J. 2002; Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174
    [Google Scholar]
  28. Kuroda K., Kageyama M. 1981; Comparative study of F-type pyocins of Pseudomonas aeruginosa. J Biochem 89:1721–1736
    [Google Scholar]
  29. Lambiase A., Raia V., Del Pezzo M., Sepe A., Carnovale V., Rossano F. 2006; Microbiology of airway disease in a cohort of patients with cystic fibrosis. BMC Infect Dis 6:4
    [Google Scholar]
  30. Langley R., Kenna D. T., Vandamme P., Ure R., Govan J. R. 2003; Lysogeny and bacteriophage host range within the Burkholderia cepacia complex. J Med Microbiol 52:483–490
    [Google Scholar]
  31. Ledson M. J., Gallagher M. J., Corkill J. E., Hart C. A., Walshaw M. J. 1998; Cross infection between cystic fibrosis patients colonised with Burkholderia cepacia. Thorax 53:432–436
    [Google Scholar]
  32. Ledson M. J., Gallagher M. J., Jackson M., Hart C. A., Walshaw M. J. 2002; Outcome of Burkholderia cepacia colonisation in an adult cystic fibrosis centre. Thorax 57:142–145
    [Google Scholar]
  33. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A. 2006; A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol 188:2073–2080
    [Google Scholar]
  34. Matsui H., Sano Y., Ishihara H., Shinomiya T. 1993; Regulation of pyocin genes in Pseudomonas aeruginosa by positive ( prtN) and negative ( prtR) regulatory genes. J Bacteriol 175:1257–1263
    [Google Scholar]
  35. McKenney D., Brown K. E., Allison D. G. 1995; Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication. J Bacteriol 177:6989–6992
    [Google Scholar]
  36. McManus T. E., McDowell A., Moore J. E., Elborn S. J. 2004; Organisms isolated from adults with cystic fibrosis. Ann Clin Microbiol Antimicrob 3:26
    [Google Scholar]
  37. Michel-Briand Y., Baysse C. 2002; The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510
    [Google Scholar]
  38. Nakayama K., Takashima K., Ishihara H., Shinomiya T., Kageyama M., Kanaya S., Ohnishi M., Murata T., Mori H., Hayashi T. 2000; The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231
    [Google Scholar]
  39. Ohkawa I., Shiga S., Kageyama M. 1980; Effect of iron concentration in the growth medium on the sensitivity of Pseudomonas aeruginosa to pyocin S2. J Biochem 87:323–331
    [Google Scholar]
  40. Pugsley A. P., Oudega B. 1987; Methods for studying colicins and their plasmids. In Plasmids: a Practical Approach pp 105–161 Edited by Hardy K. G. Oxford: IRL;
    [Google Scholar]
  41. Riley M. A., Gordon D. M. 1999; The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133
    [Google Scholar]
  42. Riley M. A., Wertz J. E. 2002a; Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364
    [Google Scholar]
  43. Riley M. A., Wertz J. E. 2002b; Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137
    [Google Scholar]
  44. Riley M. A., Goldstone C. M., Wertz J. E., Gordon D. 2003; A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol 16:690–697
    [Google Scholar]
  45. Sano Y., Kageyama M. 1981; Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol 146:733–739
    [Google Scholar]
  46. Sano Y., Kageyama M. 1993; A novel transposon-like structure carries the genes for pyocin AP41, a Pseudomonas aeruginosa bacteriocin with a DNase domain homology to E2 group colicins. Mol Gen Genet 237:161–170
    [Google Scholar]
  47. Sano Y., Matsui H., Kobayashi M., Kageyama M. 1990; Pyocins S1 and S2, bacteriocins of Pseudomonas aeruginosa. In Pseudomonas: Biotransformations, Pathogenesis, and Evolving Biotechnology pp 352–358 Edited by Silver S., Chakrabarty A. M., Iglewski B., Kaplan S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  48. Sano Y., Kobayashi M., Kageyama M. 1993a; Functional domains of S-type pyocins deduced from chimeric molecules. J Bacteriol 175:6179–6185
    [Google Scholar]
  49. Sano Y., Matsui H., Kobayashi M., Kageyama M. 1993b; Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J Bacteriol 175:2907–2916
    [Google Scholar]
  50. Seed K. D., Dennis J. J. 2005; Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol Lett 251:273–280
    [Google Scholar]
  51. Seo Y., Galloway D. R. 1990; Purification of the pyocin S2 complex from Pseudomonas aeruginosa PAO1: analysis of DNase activity. Biochem Biophys Res Commun 172:455–461
    [Google Scholar]
  52. Shinomiya T., Shiga S., Kageyama M. 1983; Genetic determinant of pyocin R2 in Pseudomonas aeruginosa PAO. I. Localization of the pyocin R2 gene cluster between the trpCD and trpE genes. Mol Gen Genet 189:375–381
    [Google Scholar]
  53. Summer E. J., Gonzalez C. F., Carlisle T., Mebane L. M., Cass A. M., Savva C. G., LiPuma J., Young R. 2004; Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. J Mol Biol 340:49–65
    [Google Scholar]
  54. Tablan O. C., Chorba T. L., Schidlow D. V., White J. W., Hardy K. A., Gilligan P. H., Morgan W. M., Carson L. A., Martone W. J. other authors 1985; Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 107:382–387
    [Google Scholar]
  55. Waite R. D., Curtis M. A. 2009; Pseudomonas aeruginosa PAO1 pyocin production affects population dynamics within mixed-culture biofilms. J Bacteriol 191:1349–1354
    [Google Scholar]
  56. Weaver V. B., Kolter R. 2004; Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 186:2376–2384
    [Google Scholar]
  57. Whiteford M. L., Wilkinson J. D., McColl J. H., Conlon F. M., Michie J. R., Evans T. J., Paton J. Y. 1995; Outcome of Burkholderia ( Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax 50:1194–1198
    [Google Scholar]
  58. Williams S. R., Gebhart D., Martin D. W., Scholl D. 2008; Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74:3868–3876
    [Google Scholar]
  59. Zabransky R. J., Day F. E. 1969; Pyocine typing of clinical strains of Pseudomonas aeruginosa. Appl Microbiol 17:293–296
    [Google Scholar]
  60. Zar J. H. 1999 Biostatistical Analysis, 4th edn. Upper Saddle River, NJ: Prentice Hall;
/content/journal/micro/10.1099/mic.0.036848-0
Loading
/content/journal/micro/10.1099/mic.0.036848-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error