1887

Abstract

When grown in glucose-, fructose- or sucrose-containing medium, the amino acid producer transiently accumulates large amounts of glycogen (up to 10 % of its dry weight), whereas only a marginal amount of glycogen is formed during growth with acetate. This carbon-source-dependent regulation is at least partially due to transcriptional control of , encoding ADP-glucose pyrophosphorylase, the first enzyme of glycogen synthesis from glucose-1-phosphate. Here, we have analysed a possible regulatory role for the transcriptional regulators RamA and RamB on glycogen content of the cells and on control of expression of and of , which encodes the second enzyme of glycogen synthesis, glycogen synthase. Determination of the glycogen content of RamA- and RamB-deficient indicated that RamA and RamB influence glycogen synthesis positively and negatively, respectively. In accordance with the identification of putative RamA and RamB binding sites upstream of and , both regulators were found to bind specifically to the intergenic promoter region. Promoter activity assays in wild-type and RamA- and RamB-deficient strains of revealed that (i) RamA is a positive regulator of and , (ii) RamB is a negative regulator of and (iii) neither RamA nor RamB alone is responsible for the carbon-source-dependent regulation of glycogen synthesis in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036756-0
2010-04-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1256.html?itemId=/content/journal/micro/10.1099/mic.0.036756-0&mimeType=html&fmt=ahah

References

  1. Antoine A. D., Tepper B. S.. 1969; Environmental control of glycogen and lipid content of Mycobacterium phlei. Microbiology55:217–226
    [Google Scholar]
  2. Arndt A., Eikmanns B. J.. 2007; The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol189:7408–7416
    [Google Scholar]
  3. Arndt A., Eikmanns B. J.. 2008; Regulation of carbon metabolism in Corynebacterium glutamicum. In Corynebacteria: Genomics and Molecular Biology pp155–182 Edited by Burkovski A. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  4. Auchter M., Arndt A., Eikmanns B. J.. 2009; Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol140:84–91
    [Google Scholar]
  5. Baker C. S., Morozov I., Suzuki K., Romeo T., Babitzke P.. 2002; CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol44:1599–1610
    [Google Scholar]
  6. Ballicora M. A., Iglesias A. A., Preiss J.. 2003; ADP-Glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev67:213–225
    [Google Scholar]
  7. Ballicora M. A., Erben E. D., Yazaki T., Bertolo A. L., Demonte A. M., Schmidt J. R., Aleanzi M., Bejar C. M., Figueroa C. M.. other authors 2007; Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modelling and pentapeptide-scanning mutagenesis. J Bacteriol189:5325–5333
    [Google Scholar]
  8. Baumbach J., Brinkrolf K., Czaja L. F., Rahmann S., Tauch A.. 2006; CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics7:24
    [Google Scholar]
  9. Baumbach J., Wittkop T., Kleindt C. K., Tauch A.. 2009; Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc4:992–1005
    [Google Scholar]
  10. Blombach B., Cramer A., Eikmanns B. J., Schreiner M.. 2009; RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol16:236–239
    [Google Scholar]
  11. Bourassa L., Camilli A.. 2009; Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol72:124–138
    [Google Scholar]
  12. Bussmann M., Emer D., Hasenbein S., Degraf S., Eikmanns B. J., Bott M.. 2009; Transcriptional regulation of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol143:173–182
    [Google Scholar]
  13. Cramer A., Eikmanns B. J.. 2007; RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J Mol Microbiol Biotechnol12:51–59
    [Google Scholar]
  14. Cramer A., Gerstmeir R., Schaffer S., Bott M., Eikmanns B. J.. 2006; Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol188:2554–2567
    [Google Scholar]
  15. Cramer A., Auchter A., Frunzke J., Bott M., Eikmmans B. J.. 2007; RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J Bacteriol189:1145–1149
    [Google Scholar]
  16. Dower W. J., Miller J. F., Ragsdale C. W.. 1988; High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res16:6127–6145
    [Google Scholar]
  17. Eikmanns B. J., Metzger M., Reinscheid D., Kircher M., Sahm H.. 1991; Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol34:617–622
    [Google Scholar]
  18. Eikmanns B. J., Thum-Schmitz N., Eggeling L., Ludtke K. U., Sahm H.. 1994; Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology140:1817–1828
    [Google Scholar]
  19. Elbein A. D., Mitchell M.. 1973; Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J Bacteriol113:863–873
    [Google Scholar]
  20. Emer D., Krug A., Eikmanns B. J., Bott M.. 2009; Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. J Biotechnol140:92–98
    [Google Scholar]
  21. Gerstmeir R., Cramer A., Dangel P., Schaffer S., Eikmanns B. J.. 2004; RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol186:2798–2809
    [Google Scholar]
  22. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  23. Hansmeier N., Albersmeier A., Tauch A., Damberg T., Ros R., Anselmetti D., Pühler A., Kalinowski J.. 2006; The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology152:923–935
    [Google Scholar]
  24. Hernández M. A., Mohn W. W., Martínez E., Rost E., Alvarez A. F., Alvarez H. M.. 2008; Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics9:600
    [Google Scholar]
  25. Igarashi R. Y., Meyer C. R.. 2000; Cloning and sequencing of glycogen metabolism genes from Rhodobacter sphaeroides 2.4.1. Expression and characterization of recombinant ADP-glucose pyrophosphorylase. Arch Biochem Biophys376:47–58
    [Google Scholar]
  26. Jolkver E., Emer D., Ballan S., Krämer R., Eikmanns B. J., Marin K.. 2009; Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol191:940–948
    [Google Scholar]
  27. Jungwirth B., Emer D., Brune I., Hansmeier N., Pühler A., Eikmanns B. J., Tauch A.. 2008; Triple transcriptional control of the resuscitation promoting factor 2 ( rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett281:190–197
    [Google Scholar]
  28. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25
    [Google Scholar]
  29. Kiel J. A., Boels J. M., Beldman G., Venema G.. 1994; Glycogen in Bacillus subtilis: molecular characterisation of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol11:203–218
    [Google Scholar]
  30. Leuchtenberger W., Huthmacher K., Drauz K.. 2005; Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol69:1–8
    [Google Scholar]
  31. Pátek M., Nešvera J., Guyonvarch A., Reyes O., Leblon G.. 2003; Promoters of Corynebacterium glutamicum. J Biotechnol104:311–323
    [Google Scholar]
  32. Preiss J., Shen E., Greenberg E., Gentner N.. 1966; Biosynthesis of bacterial glycogen. IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase of Escherichia coli B. Biochemistry5:1833–1845
    [Google Scholar]
  33. Romeo T., Preiss J.. 1989; Genetic regulation of glycogen biosynthesis in Escherichia coli: In vitro effects of cyclic AMP and guanosine 5′-diphosphate 3′diphosphate and analysis of in vivo transcripts. J Bacteriol171:2773–2782
    [Google Scholar]
  34. Romeo T., Kumar A., Preiss J.. 1988; Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene70:363–376
    [Google Scholar]
  35. Romeo T., Black J., Preiss J.. 1990; Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolite repression and stringent response systems in glg gene expression. Curr Microbiol21:131–137
    [Google Scholar]
  36. Sambou T., Dinadayala P., Stadthagen G., Barilone N., Bordat Y., Constant P., Levillain F., Neyrolles O., Gicquel B.. other authors 2008; Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol70:762–774
    [Google Scholar]
  37. Sambrook J., Russel D. W., Irwin N., Janssen U. A.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Seibold G., Dempf S., Schreiner J., Eikmanns B. J.. 2007; Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology153:1275–1285
    [Google Scholar]
  39. Studier F. W., Moffatt B. A.. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol189:113–130
    [Google Scholar]
  40. Tauch A., Homann I., Mormann S., Rüberg S., Billault A., Bathe B., Brand S., Brockmann-Gretza O., Rückert C.. other authors 2002; Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol95:25–38
    [Google Scholar]
  41. Toyoda K., Teramoto H., Inui M., Yukawa H.. 2009; Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gap gene, encoding glycerinaldehyde-3-phosphate dehydrogenase in Corynebacterium glutamicum. J Bacteriol191:968–977
    [Google Scholar]
  42. Tzvetkov M., Klopprogge C., Zelder O., Liebl W.. 2003; Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology149:1659–1673
    [Google Scholar]
  43. Uchiyama I.. 2007; MBGD: a platform for microbial genomics based on the automated construction of orthologous groups. Nucleic Acids Res35:D343–D346
    [Google Scholar]
  44. Ugalde J. E., Lepek V., Uttaro A., Estrella J., Iglesias A., Ugalde R. A.. 1998; Gene organization and transcript analysis of the Agrobacterium tumefaciens glycogen ( glg) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol180:6557–6564
    [Google Scholar]
  45. Vasicova P., Abrhamova Z., Nesvera J., Patek M., Sahm H., Eikmanns B. J.. 1998; Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech12:743–746
    [Google Scholar]
  46. Weilbacher T., Suzuki K., Dubey A. K., Wang X., Gudapaty S., Morozov I., Baker C. S., Georgellis D., Babitzke P., Romeo T.. 2003; A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol48:657–670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036756-0
Loading
/content/journal/micro/10.1099/mic.0.036756-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error