1887

Abstract

When grown in glucose-, fructose- or sucrose-containing medium, the amino acid producer transiently accumulates large amounts of glycogen (up to 10 % of its dry weight), whereas only a marginal amount of glycogen is formed during growth with acetate. This carbon-source-dependent regulation is at least partially due to transcriptional control of , encoding ADP-glucose pyrophosphorylase, the first enzyme of glycogen synthesis from glucose-1-phosphate. Here, we have analysed a possible regulatory role for the transcriptional regulators RamA and RamB on glycogen content of the cells and on control of expression of and of , which encodes the second enzyme of glycogen synthesis, glycogen synthase. Determination of the glycogen content of RamA- and RamB-deficient indicated that RamA and RamB influence glycogen synthesis positively and negatively, respectively. In accordance with the identification of putative RamA and RamB binding sites upstream of and , both regulators were found to bind specifically to the intergenic promoter region. Promoter activity assays in wild-type and RamA- and RamB-deficient strains of revealed that (i) RamA is a positive regulator of and , (ii) RamB is a negative regulator of and (iii) neither RamA nor RamB alone is responsible for the carbon-source-dependent regulation of glycogen synthesis in

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036756-0
2010-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1256.html?itemId=/content/journal/micro/10.1099/mic.0.036756-0&mimeType=html&fmt=ahah

References

  1. Antoine, A. D. & Tepper, B. S. ( 1969; ). Environmental control of glycogen and lipid content of Mycobacterium phlei. Microbiology 55, 217–226.
    [Google Scholar]
  2. Arndt, A. & Eikmanns, B. J. ( 2007; ). The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J Bacteriol 189, 7408–7416.[CrossRef]
    [Google Scholar]
  3. Arndt, A. & Eikmanns, B. J. ( 2008; ). Regulation of carbon metabolism in Corynebacterium glutamicum. In Corynebacteria: Genomics and Molecular Biology, pp. 155–182. Edited by A. Burkovski. Norfolk, UK: Caister Academic Press.
  4. Auchter, M., Arndt, A. & Eikmanns, B. J. ( 2009; ). Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J Biotechnol 140, 84–91.[CrossRef]
    [Google Scholar]
  5. Baker, C. S., Morozov, I., Suzuki, K., Romeo, T. & Babitzke, P. ( 2002; ). CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44, 1599–1610.[CrossRef]
    [Google Scholar]
  6. Ballicora, M. A., Iglesias, A. A. & Preiss, J. ( 2003; ). ADP-Glucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiol Mol Biol Rev 67, 213–225.[CrossRef]
    [Google Scholar]
  7. Ballicora, M. A., Erben, E. D., Yazaki, T., Bertolo, A. L., Demonte, A. M., Schmidt, J. R., Aleanzi, M., Bejar, C. M., Figueroa, C. M. & other authors ( 2007; ). Identification of regions critically affecting kinetics and allosteric regulation of the Escherichia coli ADP-glucose pyrophosphorylase by modelling and pentapeptide-scanning mutagenesis. J Bacteriol 189, 5325–5333.[CrossRef]
    [Google Scholar]
  8. Baumbach, J., Brinkrolf, K., Czaja, L. F., Rahmann, S. & Tauch, A. ( 2006; ). CoryneRegNet: an ontology-based data warehouse of corynebacterial transcription factors and regulatory networks. BMC Genomics 7, 24 [CrossRef]
    [Google Scholar]
  9. Baumbach, J., Wittkop, T., Kleindt, C. K. & Tauch, A. ( 2009; ). Integrated analysis and reconstruction of microbial transcriptional gene regulatory networks using CoryneRegNet. Nat Protoc 4, 992–1005.[CrossRef]
    [Google Scholar]
  10. Blombach, B., Cramer, A., Eikmanns, B. J. & Schreiner, M. ( 2009; ). RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 16, 236–239.[CrossRef]
    [Google Scholar]
  11. Bourassa, L. & Camilli, A. ( 2009; ). Glycogen contributes to the environmental persistence and transmission of Vibrio cholerae. Mol Microbiol 72, 124–138.[CrossRef]
    [Google Scholar]
  12. Bussmann, M., Emer, D., Hasenbein, S., Degraf, S., Eikmanns, B. J. & Bott, M. ( 2009; ). Transcriptional regulation of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143, 173–182.[CrossRef]
    [Google Scholar]
  13. Cramer, A. & Eikmanns, B. J. ( 2007; ). RamA, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to negative autoregulation. J Mol Microbiol Biotechnol 12, 51–59.[CrossRef]
    [Google Scholar]
  14. Cramer, A., Gerstmeir, R., Schaffer, S., Bott, M. & Eikmanns, B. J. ( 2006; ). Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 188, 2554–2567.[CrossRef]
    [Google Scholar]
  15. Cramer, A., Auchter, A., Frunzke, J., Bott, M. & Eikmmans, B. J. ( 2007; ). RamB, the transcriptional regulator of acetate metabolism in Corynebacterium glutamicum, is subject to regulation by RamA and RamB. J Bacteriol 189, 1145–1149.[CrossRef]
    [Google Scholar]
  16. Dower, W. J., Miller, J. F. & Ragsdale, C. W. ( 1988; ). High efficiency transformation of Escherichia coli by high voltage electroporation. Nucleic Acids Res 16, 6127–6145.[CrossRef]
    [Google Scholar]
  17. Eikmanns, B. J., Metzger, M., Reinscheid, D., Kircher, M. & Sahm, H. ( 1991; ). Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34, 617–622.[CrossRef]
    [Google Scholar]
  18. Eikmanns, B. J., Thum-Schmitz, N., Eggeling, L., Ludtke, K. U. & Sahm, H. ( 1994; ). Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140, 1817–1828.[CrossRef]
    [Google Scholar]
  19. Elbein, A. D. & Mitchell, M. ( 1973; ). Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthetase. J Bacteriol 113, 863–873.
    [Google Scholar]
  20. Emer, D., Krug, A., Eikmanns, B. J. & Bott, M. ( 2009; ). Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. J Biotechnol 140, 92–98.[CrossRef]
    [Google Scholar]
  21. Gerstmeir, R., Cramer, A., Dangel, P., Schaffer, S. & Eikmanns, B. J. ( 2004; ). RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186, 2798–2809.[CrossRef]
    [Google Scholar]
  22. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  23. Hansmeier, N., Albersmeier, A., Tauch, A., Damberg, T., Ros, R., Anselmetti, D., Pühler, A. & Kalinowski, J. ( 2006; ). The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032. Microbiology 152, 923–935.[CrossRef]
    [Google Scholar]
  24. Hernández, M. A., Mohn, W. W., Martínez, E., Rost, E., Alvarez, A. F. & Alvarez, H. M. ( 2008; ). Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 9, 600 [CrossRef]
    [Google Scholar]
  25. Igarashi, R. Y. & Meyer, C. R. ( 2000; ). Cloning and sequencing of glycogen metabolism genes from Rhodobacter sphaeroides 2.4.1. Expression and characterization of recombinant ADP-glucose pyrophosphorylase. Arch Biochem Biophys 376, 47–58.[CrossRef]
    [Google Scholar]
  26. Jolkver, E., Emer, D., Ballan, S., Krämer, R., Eikmanns, B. J. & Marin, K. ( 2009; ). Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191, 940–948.[CrossRef]
    [Google Scholar]
  27. Jungwirth, B., Emer, D., Brune, I., Hansmeier, N., Pühler, A., Eikmanns, B. J. & Tauch, A. ( 2008; ). Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMP-dependent regulator GlxR. FEMS Microbiol Lett 281, 190–197.[CrossRef]
    [Google Scholar]
  28. Kalinowski, J., Bathe, B., Bartels, D., Bischoff, N., Bott, M., Burkovski, A., Dusch, N., Eggeling, L., Eikmanns, B. J. & other authors ( 2003; ). The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104, 5–25.[CrossRef]
    [Google Scholar]
  29. Kiel, J. A., Boels, J. M., Beldman, G. & Venema, G. ( 1994; ). Glycogen in Bacillus subtilis: molecular characterisation of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol 11, 203–218.[CrossRef]
    [Google Scholar]
  30. Leuchtenberger, W., Huthmacher, K. & Drauz, K. ( 2005; ). Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69, 1–8.[CrossRef]
    [Google Scholar]
  31. Pátek, M., Nešvera, J., Guyonvarch, A., Reyes, O. & Leblon, G. ( 2003; ). Promoters of Corynebacterium glutamicum. J Biotechnol 104, 311–323.[CrossRef]
    [Google Scholar]
  32. Preiss, J., Shen, E., Greenberg, E. & Gentner, N. ( 1966; ). Biosynthesis of bacterial glycogen. IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase of Escherichia coli B. Biochemistry 5, 1833–1845.[CrossRef]
    [Google Scholar]
  33. Romeo, T. & Preiss, J. ( 1989; ). Genetic regulation of glycogen biosynthesis in Escherichia coli: In vitro effects of cyclic AMP and guanosine 5′-diphosphate 3′diphosphate and analysis of in vivo transcripts. J Bacteriol 171, 2773–2782.
    [Google Scholar]
  34. Romeo, T., Kumar, A. & Preiss, J. ( 1988; ). Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70, 363–376.[CrossRef]
    [Google Scholar]
  35. Romeo, T., Black, J. & Preiss, J. ( 1990; ). Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolite repression and stringent response systems in glg gene expression. Curr Microbiol 21, 131–137.[CrossRef]
    [Google Scholar]
  36. Sambou, T., Dinadayala, P., Stadthagen, G., Barilone, N., Bordat, Y., Constant, P., Levillain, F., Neyrolles, O., Gicquel, B. & other authors ( 2008; ). Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 70, 762–774.[CrossRef]
    [Google Scholar]
  37. Sambrook, J., Russel, D. W., Irwin, N. & Janssen, U. A. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Seibold, G., Dempf, S., Schreiner, J. & Eikmanns, B. J. ( 2007; ). Glycogen formation in Corynebacterium glutamicum and role of ADP-glucose pyrophosphorylase. Microbiology 153, 1275–1285.[CrossRef]
    [Google Scholar]
  39. Studier, F. W. & Moffatt, B. A. ( 1986; ). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189, 113–130.[CrossRef]
    [Google Scholar]
  40. Tauch, A., Homann, I., Mormann, S., Rüberg, S., Billault, A., Bathe, B., Brand, S., Brockmann-Gretza, O., Rückert, C. & other authors ( 2002; ). Strategy to sequence the genome of Corynebacterium glutamicum ATCC 13032: use of a cosmid and a bacterial artificial chromosome library. J Biotechnol 95, 25–38.[CrossRef]
    [Google Scholar]
  41. Toyoda, K., Teramoto, H., Inui, M. & Yukawa, H. ( 2009; ). Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gap gene, encoding glycerinaldehyde-3-phosphate dehydrogenase in Corynebacterium glutamicum. J Bacteriol 191, 968–977.[CrossRef]
    [Google Scholar]
  42. Tzvetkov, M., Klopprogge, C., Zelder, O. & Liebl, W. ( 2003; ). Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall composition. Microbiology 149, 1659–1673.[CrossRef]
    [Google Scholar]
  43. Uchiyama, I. ( 2007; ). MBGD: a platform for microbial genomics based on the automated construction of orthologous groups. Nucleic Acids Res 35, D343–D346.[CrossRef]
    [Google Scholar]
  44. Ugalde, J. E., Lepek, V., Uttaro, A., Estrella, J., Iglesias, A. & Ugalde, R. A. ( 1998; ). Gene organization and transcript analysis of the Agrobacterium tumefaciens glycogen (glg) operon: two transcripts for the single phosphoglucomutase gene. J Bacteriol 180, 6557–6564.
    [Google Scholar]
  45. Vasicova, P., Abrhamova, Z., Nesvera, J., Patek, M., Sahm, H. & Eikmanns, B. J. ( 1998; ). Integrative and autonomously replicating vectors for analysis of promoters in Corynebacterium glutamicum. Biotechnol Tech 12, 743–746.[CrossRef]
    [Google Scholar]
  46. Weilbacher, T., Suzuki, K., Dubey, A. K., Wang, X., Gudapaty, S., Morozov, I., Baker, C. S., Georgellis, D., Babitzke, P. & Romeo, T. ( 2003; ). A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48, 657–670.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036756-0
Loading
/content/journal/micro/10.1099/mic.0.036756-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error