1887

Abstract

mutations, which cause acidic phospholipid deficiency, repress transcription of the flagellar master operon , and thus impair flagellar formation and motility. The molecular mechanism of the strong repression of transcription in the mutant cells, however, has not yet been clarified. In order to shed light on this mechanism we isolated genes which, when supplied in multicopy, suppress the repression of , and found that three genes, , and were capable of suppression. Taking into account a previous report that represses production, the level of in the mutant was examined. We found that cells had a high level of and that introduction of a plasmid into cells did reduce the level. The cells exhibited a sharp increase in levels that can only be partially attributed to the slight increase in transcription; the largest part of the effect is due to a post-transcriptional accumulation of . GadW in multicopy exerts its effect by post-transcriptionally downregulating . YeaB and MetE in multicopy also exert their effect via . Disruption of caused an increase of the mRNA level, and induction from P- repressed the mRNA level. The strong repression of transcription in mutant cells is thus suggested to be caused by the accumulated .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036749-0
2010-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1650.html?itemId=/content/journal/micro/10.1099/mic.0.036749-0&mimeType=html&fmt=ahah

References

  1. Barker C. S., Prüß B. M., Matsumura P. 2004; Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537
    [Google Scholar]
  2. Cronan J. E. 2003; Bacterial membrane lipids: where do we stand?. Annu Rev Microbiol 57:203–224
    [Google Scholar]
  3. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  4. DeChavigny A., Heacock P. N., Dowhan W. 1991; Sequence and inactivation of the pss gene of Escherichia coli. Phosphatidylethanolamine may not be essential for cell viability. J Biol Chem 266:5323–5332
    [Google Scholar]
  5. de Vrije T., de Swart R. L., Dowhan W., Tommassen J., de Kruijff B. 1988; Phosphatidylglycerol is involved in protein translocation across Escherichia coli inner membranes. Nature 334:173–175
    [Google Scholar]
  6. De Wulf P., McGuire A. M., Liu X., Lin E. C. 2002; Genome-wide profiling of promoter recognition by the two-component response regulator CpxR-P in Escherichia coli. J Biol Chem 277:26652–26661
    [Google Scholar]
  7. Dong T., Schellhorn H. E. 2009; Control of RpoS in global gene expression of Escherichia coli in minimal media. Mol Genet Genomics 281:19–33
    [Google Scholar]
  8. Dowhan W., Mileykovskaya E., Bogdanov M. 2004; Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 166619–39
    [Google Scholar]
  9. Ellermeier C. D., Janakiraman A., Slauch J. M. 2002; Construction of targeted single copy lac fusions using lambda Red and FLP-mediated site-specific recombination in bacteria. Gene 290:153–161
    [Google Scholar]
  10. Francez-Charlot A., Laugel B., van Gemert A., Dubarry N., Wiorowski F., Castanié-Cornet M.-P., Gutierrez C., Cam K. 2003; RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49:823–832
    [Google Scholar]
  11. Goodrich-Blair H., Kolter R. 2000; Homocysteine thiolactone is a positive effector of σS levels in Escherichia coli. FEMS Microbiol Lett 185:117–121
    [Google Scholar]
  12. Hengge-Aronis R. 2002; Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395
    [Google Scholar]
  13. Inoue K., Matsuzaki H., Matsumoto K., Shibuya I. 1997; Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 179:2872–2878
    [Google Scholar]
  14. Kikuchi S., Shibuya I., Matsumoto K. 2000; Viability of an Escherichia coli pgsA null mutant lacking detectable phosphatidylglycerol and cardiolipin. J Bacteriol 182:371–376
    [Google Scholar]
  15. Kitamura E., Nakayama Y., Matsuzaki H., Matsumoto K., Shibuya I. 1994; Acidic phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci Biotechnol Biochem 58:2305–2307
    [Google Scholar]
  16. Lacour S., Landini P. 2004; σS-Dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol 186:7186–7195
    [Google Scholar]
  17. Lange R., Hengge-Aronis R. 1994; The cellular concentration of the σS subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8:1600–1612
    [Google Scholar]
  18. Lehnen D., Blumer C., Polen T., Wackwitz B., Wendisch V. F., Unden G. 2002; LrhA as a new transcriptional key regulator of flagella, motility and chemotaxis genes in Escherichia coli. Mol Microbiol 45:521–532
    [Google Scholar]
  19. Ma Z., Richard H., Foster J. W. 2003; pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859
    [Google Scholar]
  20. Maeda H., Fujita N., Ishihama A. 2000; Competition among seven Escherichia coli σ subunits: relative binding affinities to the core RNA polymerase. Nucleic Acids Res 28:3497–3503
    [Google Scholar]
  21. Matsumoto K. 2001; Dispensable nature of phosphatidylglycerol in Escherichia coli: dual roles of anionic phospholipids. Mol Microbiol 39:1427–1433
    [Google Scholar]
  22. Mileykovskaya E., Dowhan W. 1997; The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. J Bacteriol 179:1029–1034
    [Google Scholar]
  23. Mileykovskaya E., Dowhan W. 2005; Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol 8:135–142
    [Google Scholar]
  24. Mileykovskaya E., Ryan A. C., Mo X., Lin C.-C., Khalaf K. I., Dowhan W., Garrett T. A. 2009; Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol. J Biol Chem 284:2990–3000
    [Google Scholar]
  25. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Nagahama H., Sakamoto Y., Matsumoto K., Hara H. 2006; RcsA-dependent and -independent growth defects caused by the activated Rcs phosphorelay system in the Escherichia coli pgsA null mutant. J Gen Appl Microbiol 52:91–98
    [Google Scholar]
  27. Nagahama H., Oshima T., Mori H., Matsumoto K., Hara H. 2007; Hyperexpression of the osmB gene in an acidic phospholipid-deficient Escherichia coli mutant. J Gen Appl Microbiol 53:143–151
    [Google Scholar]
  28. Nishino T., Kitamura E., Matsuzaki H., Nishijima S., Matsumoto K., Shibuya I. 1993; Flagellar formation depends on membrane acidic phospholipids in Escherichia coli. Biosci Biotechnol Biochem 57:1805–1808
    [Google Scholar]
  29. Pesavento C., Becker G., Sommerfeldt N., Possling A., Tschowri N., Mehlis A., Hengge R. 2008; Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–2446
    [Google Scholar]
  30. Peterson C. N., Carabetta V. J., Chowdhury T., Silhavy T. J. 2006; LrhA regulates rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol 188:3175–3181
    [Google Scholar]
  31. Saha S. K., Furukawa Y., Matsuzaki H., Shibuya I., Matsumoto K. 1996; Directed mutagenesis, Ser-56 to Pro, of Bacillus subtilis phosphatidylserine synthase drastically lowers enzymatic activity and relieves amplification toxicity in Escherichia coli. Biosci Biotechnol Biochem 60:630–633
    [Google Scholar]
  32. Shi W., Bogdanov M., Dowhan W., Zusman D. R. 1993; The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J Bacteriol 175:7711–7714
    [Google Scholar]
  33. Shiba Y., Yokoyama Y., Aono Y., Kiuchi T., Kusaka J., Matsumoto K., Hara H. 2004; Activation of the Rcs signal transduction system is responsible for the thermosensitive growth defect of an Escherichia coli mutant lacking phosphatidylglycerol and cardiolipin. J Bacteriol 186:6526–6535
    [Google Scholar]
  34. Shibuya I. 1992; Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog Lipid Res 31:245–299
    [Google Scholar]
  35. Shin S., Park C. 1995; Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177:4696–4702
    [Google Scholar]
  36. Silhavy J. M., Berman M. L., Enquist L. W. 1984 Experiments with Gene Fusions Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  37. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53:85–96
    [Google Scholar]
  38. Soutourina O., Kolb A., Krin E., Laurent-Winter C., Rimsky S., Danchin A., Bertin P. 1999; Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508
    [Google Scholar]
  39. Sperandio V., Torres A. G., Kaper J. B. 2002; Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43:809–821
    [Google Scholar]
  40. Suzuki M., Hara H., Matsumoto K. 2002; Envelope disorder of Escherichia coli cells lacking phosphatidylglycerol. J Bacteriol 184:5418–5425
    [Google Scholar]
  41. Tanaka K., Takayanagi Y., Fujita N., Ishihama A., Takahashi H. 1993; Heterogeneity of the principal σ factor in Escherichia coli: the rpoS gene product, σ38, is a second principal σ factor of RNA polymerase in stationary-phase Escherichia coli. Proc Natl Acad Sci U S A 90:8303
    [Google Scholar]
  42. Usui M., Sembongi H., Matsuzaki H., Matsumoto K., Shibuya I. 1994; Primary structures of wild-type and mutant alleles encoding the phosphatidylglycerophosphate synthase of Escherichia coli. J Bacteriol 176:3389–3392
    [Google Scholar]
  43. Vijayakumar S. R. V., Kirchhof M. G., Patten C. L., Schellhorn H. E. 2004; RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J Bacteriol 186:8499–8507
    [Google Scholar]
  44. Wang R. F., Kushner S. R. 1991; Construction of versatile low-copy number vectors for cloning, sequencing and gene expression in Escherichia coli. Gene 100:195–199
    [Google Scholar]
  45. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. 2005; Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and σ factor selectivity. J Bacteriol 187:1591–1603
    [Google Scholar]
  46. Weiss D. S., Chen J. C., Ghigo J.-M., Boyd D., Beckwith J. 1999; Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508–520
    [Google Scholar]
  47. Wolfe A. J., Berg H. C. 1989; Migration of bacteria in semisolid agar. Proc Natl Acad Sci U S A 86:6973–6977
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036749-0
Loading
/content/journal/micro/10.1099/mic.0.036749-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error