1887

Abstract

The upflow anaerobic sludge blanket (UASB) reactor is a microcosm for the methanogenic degradation of organic matter in anaerobic environments, and depends on the auto-formation of dense 3D biofilms of 1–3 mm in diameter, referred to as granular sludge (biogranules). Past research has shown that UASB and other methanogenic reactors are extremely stable functionally, but the underlying basis of the functional stability is not well understood. In this study, microbial dynamics in the communities residing in UASB biogranules were analysed to determine responses to short-term perturbations (change in reactor feed). The reactor was fed with simulated brewery wastewater (SBWW) for 1.5 months (phase 1), acetate/sulfate for 2 months (phase 2), acetate alone for 3 months (phase 3) and then a return to SBWW for 2 months (phase 4). Analysis of 16S rRNA, methanogen-associated and sulfate reducer-associated gene-based-clone libraries showed a relatively simple community composed mainly of the methanogenic archaea ( and , members of the green non-sulfur () group of bacteria and , , and -related bacterial sequences. The clone libraries were dominated throughout by - and -related sequences. Although the reactor performance remained relatively stable throughout the experiment, community diversity levels generally decreased for all libraries in response to a change from SBWW to acetate alone feed. There was a large transitory increase noted in 16S diversity at the 2 month sampling on acetate alone, entirely related to an increase in bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels. Our results demonstrated that microbial communities, even highly structured ones such as in UASB biogranules, are very capable of responding to rapid and major changes in their environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036715-0
2010-08-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2418.html?itemId=/content/journal/micro/10.1099/mic.0.036715-0&mimeType=html&fmt=ahah

References

  1. Ben-Bassat, A., Lamed, R. & Zeikus, J. G. ( 1981; ). Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146, 192–199.
    [Google Scholar]
  2. Boone, D. R. & Bryant, M. P. ( 1980; ). Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40, 626–632.
    [Google Scholar]
  3. Briones, A. & Raskin, L. ( 2003; ). Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14, 270–276.[CrossRef]
    [Google Scholar]
  4. Davey, M. E. & O'Toole, G. A. ( 2000; ). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64, 847–867.[CrossRef]
    [Google Scholar]
  5. De Bok, F. A. M., Stams, A. J. M., Dijkema, C. & Boone, D. R. ( 2001; ). Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Appl Environ Microbiol 67, 1800–1804.[CrossRef]
    [Google Scholar]
  6. Delbes, C., Moletta, R. & Godon, J. J. ( 2000; ). Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction-single-strand conformation polymorphism analysis. Environ Microbiol 2, 506–515.[CrossRef]
    [Google Scholar]
  7. Delbes, C., Moletta, R. & Godon, J. J. ( 2001; ). Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem. FEMS Microbiol Ecol 35, 19–26.[CrossRef]
    [Google Scholar]
  8. Díaz, E., Amils, R. & Sanz, J. L. ( 2003; ). Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48, 57–64.
    [Google Scholar]
  9. Fernandez, A., Huang, S., Seston, S., Xing, J., Hickey, R., Criddle, C. & Tiedje, J. ( 1999; ). How stable is stable? Function versus community composition. Appl Environ Microbiol 65, 3697–3704.
    [Google Scholar]
  10. Fernandez, A. S., Hashsham, S. A., Dollhopf, S. L., Raskin, L., Glagoleva, O., Dazzo, F. B., Hickey, R. F., Criddle, C. S. & Tiedje, J. M. ( 2000; ). Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66, 4058–4067.[CrossRef]
    [Google Scholar]
  11. Ferry, J. G., Smith, P. H. & Wolfe, R. S. ( 1974; ). Methanospirillum, a new genus of Methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24, 465–469.[CrossRef]
    [Google Scholar]
  12. Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W. & Saunders, J. R. ( 1996; ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62, 668–675.
    [Google Scholar]
  13. Harmsen, H. J. M., Van Kuijk, B. L. M., Plugge, C. M., Akkermans, A. D. L., De Vos, W. & Stams, A. J. M. ( 1998; ). Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48, 1383–1387.[CrossRef]
    [Google Scholar]
  14. Hattori, S., Kamagata, Y. & Shoun, H. ( 2000; ). Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50, 1601–1609.[CrossRef]
    [Google Scholar]
  15. Hurlbert, S. H. ( 1971; ). The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586.[CrossRef]
    [Google Scholar]
  16. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H. ( 2002; ). Pelotomaculum thermopropionicum gen. nov., sp nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef]
    [Google Scholar]
  17. Kotelnikova, S., Macario, A. & Pedersen, K. ( 1998; ). Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48, 357–367.[CrossRef]
    [Google Scholar]
  18. Kremer, D. R., Nienhuis-Kuiper, H. E. & Hansen, T. A. ( 1988; ). Ethanol dissimilation in Desulfovibrio. Arch Microbiol 150, 552–557.[CrossRef]
    [Google Scholar]
  19. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  20. LaPara, T. M., Nakatsu, C. H., Pantea, L. M. & Alleman, J. E. ( 2002; ). Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. Water Res 36, 638–646.[CrossRef]
    [Google Scholar]
  21. Lee, M. J. & Zinder, S. H. ( 1988; ). Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54, 124–129.
    [Google Scholar]
  22. Lettinga, G. ( 1995; ). Anaerobic digestion and waste-water treatment systems. Antonie Van Leeuwenhoek 67, 3–28.[CrossRef]
    [Google Scholar]
  23. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  24. Lueders, T. & Friedrich, M. W. ( 2003; ). Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl Environ Microbiol 69, 320–326.[CrossRef]
    [Google Scholar]
  25. Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. ( 1995; ). Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40, 148–158.[CrossRef]
    [Google Scholar]
  26. Muyzer, G., Wall, E. C. D. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  27. Pender, S., Toomey, M., Carton, M., Eardly, D., Patching, J. W. C., Colleran, E. & O'Flaherty, V. ( 2004; ). Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res 38, 619–630.[CrossRef]
    [Google Scholar]
  28. Plugge, C. M., Balk, M. & Stams, A. J. M. ( 2002; ). Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52, 391–399.
    [Google Scholar]
  29. Schink, B. ( 1992a; ). Syntrophism among prokaryotes. In The Prokaryotes. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  30. Schink, B. ( 1992b; ). The genus Pelobacter. In The Prokaryotes. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  31. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262–280.
    [Google Scholar]
  32. Schnürer, A., Houwen, F. P. & Svensson, B. H. ( 1994; ). Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162, 70–74.[CrossRef]
    [Google Scholar]
  33. Schnürer, A., Schink, B. & Svensson, B. H. ( 1996; ). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46, 1145–1152.[CrossRef]
    [Google Scholar]
  34. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 1999; ). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65, 1280–1288.
    [Google Scholar]
  35. Sekiguchi, Y., Kamagata, Y. & Harada, H. ( 2001a; ). Recent advances in methane fermentation technology. Curr Opin Biotechnol 12, 277–282.[CrossRef]
    [Google Scholar]
  36. Sekiguchi, Y., Takahashi, H., Kamagata, Y., Ohashi, A. & Harada, H. ( 2001b; ). In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67, 5740–5749.[CrossRef]
    [Google Scholar]
  37. Shannon, C. E. & Weaver, W. ( 1948; ). Mathematical Theory of Communications. Urbana: University of Illinois Press.
  38. Sheffield, V. C., Cox, D. R., Lerman, L. S. & Myers, R. M. ( 1989; ). Attachment of a 40-base-pair G+C-rich sequence to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86, 232–236.[CrossRef]
    [Google Scholar]
  39. Shigematsu, T., Tang, Y. Q., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S. & Kida, K. ( 2003; ). Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96, 547–558.[CrossRef]
    [Google Scholar]
  40. Tipper, J. C. ( 1979; ). Rarefaction and rarefiction – the use and abuse of a method in paleoecology. Paleobiology 5, 423–434.
    [Google Scholar]
  41. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. ( 1998; ). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982.
    [Google Scholar]
  42. Wallrabenstein, C., Hauschild, E. & Schink, B. ( 1995; ). Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164, 346–352.[CrossRef]
    [Google Scholar]
  43. Wu, M. M., Criddle, C. S. & Hickey, R. F. ( 1995; ). Mass transfer and temperature effect on substrate utilization in brewery granules. Biotechnol Bioeng 46, 465–475.[CrossRef]
    [Google Scholar]
  44. Zinder, S. H. & Koch, M. ( 1984; ). Non-acetoclastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138, 263–272.[CrossRef]
    [Google Scholar]
  45. Zumstein, E., Moletta, R. & Godon, J. J. ( 2000; ). Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2, 69–78.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036715-0
Loading
/content/journal/micro/10.1099/mic.0.036715-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error