1887

Abstract

produces at least three [NiFe] hydrogenases (Hyd-1, Hyd-2 and Hyd-3). Hyd-1 and Hyd-2 are membrane-bound respiratory isoenzymes with their catalytic subunits exposed to the periplasmic side of the membrane. Hyd-3 is part of the cytoplasmically oriented formate hydrogenlyase complex. In this work the involvement of each of these hydrogenases in Pd(II) reduction under acidic (pH 2.4) conditions was studied. While all three hydrogenases could contribute to Pd(II) reduction, the presence of either periplasmic hydrogenase (Hyd-1 or Hyd-2) was required to observe Pd(II) reduction rates comparable to the parent strain. An mutant strain genetically deprived of all hydrogenase activity showed negligible Pd(II) reduction. Electron microscopy suggested that the location of the resulting Pd(0) deposits was as expected from the subcellular localization of the particular hydrogenase involved in the reduction process. Membrane separation experiments established that Pd(II) reductase activity is membrane-bound and that hydrogenases are required to initiate Pd(II) reduction. The catalytic activity of the resulting Pd(0) nanoparticles in the reduction of Cr(VI) to Cr(III) varied according to the mutant strain used for the initial bioreduction of Pd(II). Optimum Cr(VI) reduction, comparable to that observed with a commercial Pd catalyst, was observed when the bio-Pd(0) catalytic particles were prepared from a strain containing an active Hyd-1. The results are discussed in the context of economic production of novel nanometallic catalysts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036681-0
2010-09-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2630.html?itemId=/content/journal/micro/10.1099/mic.0.036681-0&mimeType=html&fmt=ahah

References

  1. Ballantine, S. P. & Boxer, D. H. ( 1985; ). Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol 163, 454–459.
    [Google Scholar]
  2. Baxter-Plant, V. S., Mikheenko, I. P. & Macaskie, L. E. ( 2003; ). Sulphate-reducing bacteria, palladium and reductive dehalogenation of chlorinated aromatic compounds. Biodegradation 14, 83–90.[CrossRef]
    [Google Scholar]
  3. Casadaban, M. J. & Cohen, S. N. ( 1979; ). Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A 76, 4530–4533.[CrossRef]
    [Google Scholar]
  4. Chardin, B., Giudici-Orticoni, M. T., Luca, G., Guigliarelli, B. & Bruschi, M. ( 2003; ). Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63, 315–321.[CrossRef]
    [Google Scholar]
  5. Creamer, N. J., Baxter-Plant, V. S., Henderson, J., Potter, N. & Mackaskie, L. E. ( 2006; ). Palladium and gold removal and recovery from precious metals solutions and electronic scrap leachates by Desulfovobrio desulfuricans. Biotech Lett 28, 1475–1482.[CrossRef]
    [Google Scholar]
  6. Creamer, N. J., Mikheenko, I. P., Yong, P., Deplanche, K., Sanyahumbi, D., Wood, J., Pollman, K., Merroun, M., Selenska-Pobell, S. & Macaskie, L. E. ( 2007; ). Novel supported Pd hydrogenation bionanocatalyst for hybrid homogeneous/heterogeneous catalysis. Catal Today 128, 80–87.[CrossRef]
    [Google Scholar]
  7. Dasages, G. C. ( 1978; ). Absorptiometrique des Elements Mineraux. Paris. : Masson.
    [Google Scholar]
  8. De Luca, G., de Philip, P., Dermoun, Z., Rousset, M. & Verméglio, A. ( 2001; ). Reduction of technetium(VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl Environ Microbiol 67, 4583–4587.[CrossRef]
    [Google Scholar]
  9. Deplanche, K. & Macaskie, L. E. ( 2008; ). Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99, 1055–1064.[CrossRef]
    [Google Scholar]
  10. Deplanche, K., Attard, G. A. & Macaskie, L. E. ( 2007; ). Biorecovery of gold from jewellery wastes by Desulfovibrio desulfuricans and Escherichia coli and biomanufacture of active Au-nanomaterial. Adv Mater Res 20–21, 647–650.
    [Google Scholar]
  11. De Vargas, I., Macaskie, L. E. & Guibal, E. ( 2004; ). Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol 7, 49–56.
    [Google Scholar]
  12. De Vargas, I., Sanyahumbi, D., Asworth, M. A., Hardy, C. M. & Macaskie, L. E. ( 2005; ). Use of X-ray photoelectron spectroscopy to elucidate the mechanisms of palladium and platinum biosorption by Desulfovibrio desulfuricans biomass. In 16th International Biohydrometallurgy Symposium (16th International Biohydrometallurgy Symposium, Cape Town, SA), pp. 605–616. Edited by S. T. L. Harrison, D. E. Rawlings & J. Petersen.
  13. De Windt, W., Aelterman, P. & Verstraete, W. ( 2005; ). Bioreductive deposition of palladium(0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7, 314–325.[CrossRef]
    [Google Scholar]
  14. Dubini, A., Pye, R. L., Jack, R. L., Palmer, T. & Sargent, F. ( 2002; ). How bacteria get energy from hydrogen: a genetic analysis of periplasmic hydrogen oxidation in Escherichia coli. Int J Hydrogen Energy 27, 1413–1420.[CrossRef]
    [Google Scholar]
  15. Faramarzi, M. A., Stagars, M., Pensini, E., Krebs, W. & Brandl, H. ( 2004; ). Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113, 321–326.[CrossRef]
    [Google Scholar]
  16. Hamilton, C. M., Aldea, M., Washburn, B. K., Babitzke, P. & Kushner, S. R. ( 1989; ). New method for generating deletions and gene replacements in Escherichia coli. J Bacteriol 171, 4617–4622.
    [Google Scholar]
  17. Harrad, S., Robson, M., Hazrati, S., Baxter-Plant, V. S., Deplanche, K., Redwood, M. D. & Macaskie, L. E. ( 2007; ). Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic catalyst. J Environ Monit 9, 314–318.[CrossRef]
    [Google Scholar]
  18. Humphries, A. C., Nott, K. P., Hall, L. D. & Macaskie, L. E. ( 2004; ). Continuous removal of Cr(VI) from aqueous solutions catalyzed by palladized biomass of Desulfovibrio vulgaris. Biotechnol Lett 26, 1529–1532.[CrossRef]
    [Google Scholar]
  19. Kashefi, K., Tor, J. M., Nevin, K. P. & Lovley, D. R. ( 2001; ). Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Environ Microbiol 67, 3275–3279.[CrossRef]
    [Google Scholar]
  20. Konishi, Y., Tsukiyama, T., Ohno, K., Saitoh, N., Nomura, T. & Nagamine, S. ( 2006; ). Intracellular recovery of gold by microbial reduction of AuCl4 ions using the anaerobic bacterium Shewanella alga. . Hydrometallurgy 81, 24–29.[CrossRef]
    [Google Scholar]
  21. Larsson, P., Olka, L. & Tranvik, L. ( 1988; ). Microbial degradation of xenobiotic, aromatic pollutants in humic water. Appl Environ Microbiol 54, 1864–1867.
    [Google Scholar]
  22. Lide, D. R. ( 2000; ). Handbook of Chemistry and Physics, 81st edn. Boca Raton, FL. : CRC Press.
    [Google Scholar]
  23. Lloyd, J. R. ( 2003; ). Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27, 411–425.[CrossRef]
    [Google Scholar]
  24. Lloyd, J. R., Cole, J. A. & Macaskie, L. E. ( 1997; ). Reduction of heptavalent technetium from solution by Escherichia coli. J Bacteriol 179, 2014–2021.
    [Google Scholar]
  25. Lloyd, J. R., Harding, C. L. & Macaskie, L. E. ( 1997b; ). Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli. Biotechnol Bioeng 55, 505–510.[CrossRef]
    [Google Scholar]
  26. Lloyd, J. R., Yong, P. & Macaskie, L. E. ( 1998; ). Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64, 4607–4609.
    [Google Scholar]
  27. Lloyd, J. R., Ridley, J., Khizniak, T., Lyalikova, N. N. & Macaskie, L. E. ( 1999; ). Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65, 2691–2696.
    [Google Scholar]
  28. Lloyd, J. R., Mabbett, A. N., Williams, D. R. & Macaskie, L. E. ( 2001; ). Metal reduction by sulphate reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59, 327–337.[CrossRef]
    [Google Scholar]
  29. Lovley, D. R. ( 1993; ). Dissimilatory metal reduction. Annu Rev Microbiol 47, 263–290.[CrossRef]
    [Google Scholar]
  30. Lovley, D. R. & Phillips, E. J. P. ( 1992; ). Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58, 850–856.
    [Google Scholar]
  31. Mabbett, A. N., Lloyd, J. R. & Macaskie, L. E. ( 2002; ). Effect of complexing agents on reduction of Cr(VI) by Desulfovibrio vulgaris ATCC 29579. Biotechnol Bioeng 79, 389–397.[CrossRef]
    [Google Scholar]
  32. Mabbett, A. N., Sanyahumbi, D., Yong, P. & Macaskie, L. E. ( 2006; ). Biorecovered precious metals from industrial wastes. Single step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental applications. Environ Sci Technol 40, 1015–1021.[CrossRef]
    [Google Scholar]
  33. Macaskie, L. E., Baxter-Plant, V. S., Creamer, N. J., Humphries, A. C., Mikheenko, I. P., Mikheenko, P. M., Penfold, D. M. & Yong, P. ( 2005; ). Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33, 76–79.[CrossRef]
    [Google Scholar]
  34. Meroueh, S. O., Bencze, K. Z., Hesek, D., Lee, M., Fisher, J. F., Stemmler, T. L. & Mobashery, S. ( 2006; ). Three-dimensional structure of the bacterial cell wall peptidoglycan. Proc Natl Acad Sci U S A 103, 4404–4409.[CrossRef]
    [Google Scholar]
  35. Mikheenko, I. P. ( 2004; ). Nanoscale palladium recovery. PhD thesis, University of Birmingham, UK.
  36. Mikheenko, I. P., Rousset, M., Dementin, S. & Macaskie, L. E. ( 2008; ). Bioaccumulation of palladium by Desulfovibrio fructosovorans and hydrogenase deficient mutants. Appl Environ Microbiol 74, 6144–6146.[CrossRef]
    [Google Scholar]
  37. Rawlings, D. E. & Johnson, D. B. ( 2007; ). The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153, 315–324.[CrossRef]
    [Google Scholar]
  38. Redwood, M. D. ( 2007; ). Biohydrogen and biomass-supported palladium catalysts for energy production and waste minimisation. PhD thesis, University of Birmingham, UK.
  39. Redwood, M. D., Mikheenko, I. P., Sargent, F. & Macaskie, L. E. ( 2008; ). Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278, 48–55.[CrossRef]
    [Google Scholar]
  40. Rousset, M., Casalot, L., de Philip, P., Bélaich, A., Mikheenko, I. P. & Macaskie, L. E. ( 2006; ). Use of bacterium strains for the preparation of metallic biocatalysts, in particular for the preparation of palladium biocatalysts. European Patent Application Number: WO/2006/087334. International Application No. PCT/EP2006/05094.
  41. Sargent, F., Stanley, N. R., Berks, B. C. & Palmer, T. ( 1999; ). Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB Protein. J Biol Chem 274, 36073–36082.[CrossRef]
    [Google Scholar]
  42. Sawers, R. G. ( 1994; ). The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie van Leeuwenhoek 66, 57–88.[CrossRef]
    [Google Scholar]
  43. Sawers, R. G., Ballantine, S. P. & Boxer, D. H. ( 1985; ). Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164, 1324–1331.
    [Google Scholar]
  44. Skibinski, D. A., Golby, P., Chang, Y. S., Sargent, F., Hoffman, R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C. & Andrews, S. C. ( 2002; ). Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma54-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184, 6642–6653.[CrossRef]
    [Google Scholar]
  45. Yanke, L. J., Bryant, R. D. & Laishley, E. J. ( 1995; ). Hydrogenase I of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobe 1, 61–67.[CrossRef]
    [Google Scholar]
  46. Yong, P., Rowson, N. A., Farr, J. P., Harris, I. R. & Macaskie, L. E. ( 2002a; ). Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80, 369–379.[CrossRef]
    [Google Scholar]
  47. Yong, P., Rowson, N. A., Farr, J. P., Harris, I. R. & Macaskie, L. E. ( 2002b; ). Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77, 593–601.[CrossRef]
    [Google Scholar]
  48. Yong, P., Paterson-Beedle, M., Mikheenko, I. P. & Macaskie, L. E. ( 2007; ). From bio-mineralisation to fuel cells: biomanufacture of Pd and Pt nanocrystals for fuel cell electrode catalyst. Biotechnol Lett 29, 539–544.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036681-0
Loading
/content/journal/micro/10.1099/mic.0.036681-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error