1887

Abstract

Fructansucrase enzymes polymerize the fructose moiety of sucrose into levan or inulin fructans, with (2-6) and (2-1) linkages, respectively. Here, we report an evaluation of fructan synthesis in three strains, identification of the fructansucrase-encoding genes and characterization of the recombinant proteins and fructan (oligosaccharide) products. High-performance anion-exchange chromatography and nuclear magnetic resonance analysis of the fructo-oligosaccharides (FOS) and polymers produced by the strains and the recombinant enzymes revealed that, , strains DSM 20604 and 20077 synthesize inulin (and oligosaccharides) and levan products, respectively. DSM 20604 is only the second strain shown to produce inulin polymer and FOS , and is unique in its distribution of FOS synthesized, ranging from DP2 to DP13. The probiotic bacterium DSM 20243 did not produce any fructan, although we identified a fructansucrase-encoding gene in its genome sequence. Further studies showed that this DSM 20243 gene was prematurely terminated by a stop codon. Exchanging the stop codon for a glutamine codon resulted in a recombinant enzyme producing inulin and FOS. The three recombinant fructansucrase enzymes characterized from three different strains have very similar primary protein structures, yet synthesize different fructan products. An interesting feature of the strains is that they were unable to ferment raffinose, whereas their respective recombinant enzymes converted raffinose into fructan and FOS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036616-0
2010-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1264.html?itemId=/content/journal/micro/10.1099/mic.0.036616-0&mimeType=html&fmt=ahah

References

  1. Anwar, M. A., Kralj, S., Van der Maarel, M. J. & Dijkhuizen, L. ( 2008; ). The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl Environ Microbiol 74, 3426–3433.[CrossRef]
    [Google Scholar]
  2. Armuzzi, A., Cremonini, F., Bartolozzi, F., Canducci, F., Candelli, M., Ojetti, V., Cammarota, G., Anti, M., De, L. A. & other authors ( 2001; ). The effect of oral administration of Lactobacillus GG on antibiotic-associated gastrointestinal side-effects during Helicobacter pylori eradication therapy. Aliment Pharmacol Ther 15, 163–169.[CrossRef]
    [Google Scholar]
  3. Azcarate-Peril, M. A., Altermann, E., Goh, Y. J., Tallon, R., Sanozky-Dawes, R. B., Pfeiler, E. A., O'Flaherty, S., Buck, B. L., Dobson, A. & other authors ( 2008; ). Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74, 4610–4625.[CrossRef]
    [Google Scholar]
  4. Ben Ammar, Y., Matsubara, T., Ito, K., Iizuka, M., Limpaseni, T., Pongsawasdi, P. & Minamiura, N. ( 2002; ). Characterization of a thermostable levansucrase from Bacillus sp. TH4–2 capable of producing high molecular weight levan at high temperature. J Biotechnol 99, 111–119.[CrossRef]
    [Google Scholar]
  5. Chipperfield, A. R. & Taylor, D. M. ( 1970; ). Binding of plutonium to glycoproteins in vitro. Radiat Res 43, 393–402.[CrossRef]
    [Google Scholar]
  6. Conway, P. L., Gorbach, S. L. & Goldin, B. R. ( 1987; ). Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70, 1–12.[CrossRef]
    [Google Scholar]
  7. Fischetti, V. A., Pancholi, V. & Schneewind, O. ( 1990; ). Conservation of a hexapeptide sequence in the anchor region of surface proteins from Gram-positive cocci. Mol Microbiol 4, 1603–1605.[CrossRef]
    [Google Scholar]
  8. Homann, A., Biedendieck, R., Gotze, S., Jahn, D. & Seibel, J. ( 2007; ). Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J 407, 189–198.[CrossRef]
    [Google Scholar]
  9. Itoh, T., Fujimoto, Y., Kawai, Y., Toba, T. & Saito, T. ( 1995; ). Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett Appl Microbiol 21, 137–141.[CrossRef]
    [Google Scholar]
  10. Kirjavainen, P. V., Ouwehand, A. C., Isolauri, E. & Salminen, S. J. ( 1998; ). The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 167, 185–189.[CrossRef]
    [Google Scholar]
  11. Kirjavainen, P. V., El-Nezami, H. S., Salminen, S. J., Ahokas, J. T. & Wright, P. F. ( 1999; ). The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunol Med Microbiol 26, 131–135.[CrossRef]
    [Google Scholar]
  12. Korakli, M., Ganzle, M. G. & Vogel, R. F. ( 2002; ). Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92, 958–965.[CrossRef]
    [Google Scholar]
  13. Kullen, M. J., Sanozky-Dawes, R. B., Crowell, D. C. & Klaenhammer, T. R. ( 2000; ). Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol 89, 511–516.[CrossRef]
    [Google Scholar]
  14. Martinez-Fleites, C., Ortiz-Lombardia, M., Pons, T., Tarbouriech, N., Taylor, E. J., Arrieta, J. G., Hernandez, L. & Davies, G. J. ( 2005; ). Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390, 19–27.[CrossRef]
    [Google Scholar]
  15. Meng, G. & Futterer, K. ( 2003; ). Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 10, 935–941.[CrossRef]
    [Google Scholar]
  16. Meng, G. & Futterer, K. ( 2008; ). Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase. BMC Struct Biol 8, 16 [CrossRef]
    [Google Scholar]
  17. Morales-Arrieta, S., Rodriguez, M. E., Segovia, L., Lopez-Munguia, A. & Olvera-Carranza, C. ( 2006; ). Identification and functional characterization of levS, a gene encoding for a levansucrase from Leuconostoc mesenteroides NRRL B-512 F. Gene 376, 59–67.[CrossRef]
    [Google Scholar]
  18. Oda, M., Hasegawa, S., Komatsu, S., Kambe, M. & Tsuchiya, M. ( 1983; ). Anti-tumor polysaccharide from Lactobacillus sp. Agric Biol Chem 47, 1623–1625.[CrossRef]
    [Google Scholar]
  19. Olivares-Illana, V., Wacher-Rodarte, C., Le Borgne, S. & López-Munguía, A. ( 2002; ). Characterization of a cell-associated inulosucrase from a novel source: a Leuconostoc citreum strain isolated from Pozol, a fermented corn beverage of Mayan origin. J Ind Microbiol Biotechnol 28, 112–117.[CrossRef]
    [Google Scholar]
  20. Olvera, C., Centeno-Leija, S. & Lopez-Munguia, A. ( 2007; ). Structural and functional features of fructansucrases present in Leuconostoc mesenteroides ATCC 8293. Antonie Van Leeuwenhoek 92, 11–20.[CrossRef]
    [Google Scholar]
  21. Ozimek, L. K., van Hijum, S. A., van Koningsveld, G. A., Van der Maarel, M. J., Van Geel-Schutten, G. H. & Dijkhuizen, L. ( 2004; ). Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett 560, 131–133.[CrossRef]
    [Google Scholar]
  22. Ozimek, L. K., Euverink, G. J., Van der Maarel, M. J. & Dijkhuizen, L. ( 2005; ). Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Lett 579, 1124–1128.[CrossRef]
    [Google Scholar]
  23. Ozimek, L. K., Kralj, S., Kaper, T., Van der Maarel, M. J. & Dijkhuizen, L. ( 2006a; ). Single amino acid residue changes in subsite −1 of inulosucrase from Lactobacillus reuteri 121 strongly influence the size of products synthesized. FEBS J 273, 4104–4113.[CrossRef]
    [Google Scholar]
  24. Ozimek, L. K., Kralj, S., Van der Maarel, M. J. & Dijkhuizen, L. ( 2006b; ). The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152, 1187–1196.[CrossRef]
    [Google Scholar]
  25. Pedrosa, M. C., Golner, B. B., Goldin, B. R., Barakat, S., Dallal, G. E. & Russell, R. M. ( 1995; ). Survival of yogurt-containing organisms and Lactobacillus gasseri (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypochlorhydric elderly subjects. Am J Clin Nutr 61, 353–359.
    [Google Scholar]
  26. Pridmore, R. D., Berger, B., Desiere, F., Vilanova, D., Barretto, C., Pittet, A. C., Zwahlen, M. C., Rouvet, M., Altermann, E. & other authors ( 2004; ). The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101, 2512–2517.[CrossRef]
    [Google Scholar]
  27. Rosell, K. G. & Birkhed, D. ( 1974; ). An inulin-like fructan produced by Streptococcus mutans strain JC2. Acta Chem Scand B 28, 589
    [Google Scholar]
  28. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbour Laboratory.
  29. Schwab, C., Walter, J., Tannock, G. W., Vogel, R. F. & Ganzle, M. G. ( 2007; ). Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst Appl Microbiol 30, 433–443.[CrossRef]
    [Google Scholar]
  30. Shimamura, A., Tsuboi, K., Nagase, T., Ito, M., Tsumori, H. & Mukasa, H. ( 1987; ). Structural determination of d-fructans from Streptococcus mutans, serotype b, c, e, and f strains, by 13C-n.m.r. spectroscopy. Carbohydr Res 165, 150–154.[CrossRef]
    [Google Scholar]
  31. Tejada-Simon, M. V. & Pestka, J. J. ( 1999; ). Proinflammatory cytokine and nitric oxide induction in murine macrophages by cell wall and cytoplasmic extracts of lactic acid bacteria. J Food Prot 62, 1435–1444.
    [Google Scholar]
  32. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  33. Tieking, M., Ehrmann, M. A., Vogel, R. F. & Ganzle, M. G. ( 2005; ). Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66, 655–663.[CrossRef]
    [Google Scholar]
  34. Trujillo, L. E., Gomez, R., Banguela, A., Soto, M., Arrieta, J. G. & Hernández, L. ( 2004; ). Catalytical properties of N-glycosylated Gluconacetobacter diazotrophicus levansucrase produced in yeast. Electron J Biotechnol 7, 116–123.
    [Google Scholar]
  35. Van Geel-Schutten, G. H., Faber, E. J., Smit, E., Bonting, K., Smith, M. R., Ten Brink, B., Kamerling, J. P., Vliegenthart, J. F. & Dijkhuizen, L. ( 1999; ). Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl Environ Microbiol 65, 3008–3014.
    [Google Scholar]
  36. van Hijum, S. A. F. T., Bonting, K., Van der Maarel, M. J. E. C. & Dijkhuizen, L. ( 2001; ). Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205, 323–328.[CrossRef]
    [Google Scholar]
  37. van Hijum, S. A. F. T., Van Geel-Schutten, G. H., Rahaoui, H., Van der Maarel, M. J. & Dijkhuizen, L. ( 2002; ). Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68, 4390–4398.[CrossRef]
    [Google Scholar]
  38. van Hijum, S. A. F. T., Van der Maarel, M. J. & Dijkhuizen, L. ( 2003; ). Kinetic properties of an inulosucrase from Lactobacillus reuteri 121. FEBS Lett 534, 207–210.[CrossRef]
    [Google Scholar]
  39. van Hijum, S. A. F. T., Szalowska, E., Van der Maarel, M. J. & Dijkhuizen, L. ( 2004; ). Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 150, 621–630.[CrossRef]
    [Google Scholar]
  40. van Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L. & van Geel-Schutten, I. G. ( 2006; ). Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70, 157–176.[CrossRef]
    [Google Scholar]
  41. Wada, T., Ohguchi, M. & Iwai, Y. ( 2003; ). A novel enzyme of Bacillus sp. 217C–11 that produces inulin from sucrose. Biosci Biotechnol Biochem 67, 1327–1334.[CrossRef]
    [Google Scholar]
  42. Waldherr, F. W., Meissner, D. & Vogel, R. F. ( 2008; ). Genetic and functional characterization of Lactobacillus panis levansucrase. Arch Microbiol 190, 497–505.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036616-0
Loading
/content/journal/micro/10.1099/mic.0.036616-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error