1887

Abstract

During cycling between the tick vector and a mammal, the Lyme disease spirochaete must coordinate expression of outer-surface proteins (Osps) A and B to quickly respond to environmental changes. The pathogen abundantly produces OspA/B in the tick, but represses their expression during mammalian infection. This paper reports a regulatory structure, consisting of two sequences flanking the promoter, that is required for enhancing expression in grown , but repressing its expression during murine infection. Deletion or replacement of either the upstream or downstream sequence of the promoter caused a significant decrease in expression , but a dramatic increase during murine infection. Fusion of either sequence with the reporter promoter led to increased expression of an reporter gene , but a decrease in the murine host. Furthermore, simultaneous fusion of both sequences with the reporter promoter showed a synergistic effect in enhancing expression of the reporter , but repressing its expression during murine infection. Taken together, the results demonstrate that the regulatory structure functions oppositely in the two different environments and potentially provides with a molecular mechanism to quickly adapt to the distinct environments during its enzootic life cycle.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036608-0
2010-07-01
2021-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2194.html?itemId=/content/journal/micro/10.1099/mic.0.036608-0&mimeType=html&fmt=ahah

References

  1. Battisti J. M., Bono J. L., Rosa P. A., Schrumpf M. E., Schwan T. G., Policastro P. F. 2008; Outer surface protein A protects Lyme disease spirochetes from acquired host immunity in the tick vector. Infect Immun 76:5228–5237
    [Google Scholar]
  2. Bykowski T., Babb K., von Lackum K., Riley S. P., Norris S. J., Stevenson B. 2006; Transcriptional regulation of the Borrelia burgdorferi antigenically variable VlsE surface protein. J Bacteriol 188:4879–4889
    [Google Scholar]
  3. Caimano M. J., Eggers C. H., Gonzalez C. A., Radolf J. D. 2005; Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187:7845–7852
    [Google Scholar]
  4. Caimano M. J., Iyer R., Eggers C. H., Gonzalez C., Morton E. A., Gilbert M. A., Schwartz I., Radolf J. D. 2007; Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65:1193–1217
    [Google Scholar]
  5. Collado-Vides J., Magasanik B., Gralla J. D. 1991; Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev 55:371–394
    [Google Scholar]
  6. de Silva A. M., Telford S. R. III, Brunet L. R., Barthold S. W., Fikrig E. 1996; Borrelia burgdorferi OspA is an arthropod-specific transmission-blocking Lyme disease vaccine. J Exp Med 183:271–275
    [Google Scholar]
  7. de Silva A. M., Fish D., Burkot T. R., Zhang Y., Fikrig E. 1997; OspA antibodies inhibit the acquisition of Borrelia burgdorferi by Ixodes ticks. Infect Immun 65:3146–3150
    [Google Scholar]
  8. Eggers C. H., Caimano M. J., Radolf J. D. 2004; Analysis of promoter elements involved in the transcriptional initiation of RpoS-dependent Borrelia burgdorferi genes. J Bacteriol 186:7390–7402
    [Google Scholar]
  9. Fingerle V., Goettner G., Gern L., Wilske B., Schulte-Spechtel U. 2007; Complementation of a Borrelia afzelii ospC mutant highlights the crucial role of OspC for dissemination of Borrelia afzelii in Ixodes ricinus. Int J Med Microbiol 297:97–107
    [Google Scholar]
  10. Grimm D., Tilly K., Byram R., Stewart P. E., Krum J. G., Bueschel D. M., Schwan T. G., Policastro P. F., Elias A. F., Rosa P. A. 2004; Outer-surface protein C of the Lyme disease spirochete: a protein induced in ticks for infection of mammals. Proc Natl Acad Sci U S A 101:3142–3147
    [Google Scholar]
  11. He M., Boardman B. K., Yan D., Yang X. F. 2007; Regulation of expression of the fibronectin-binding protein BBK32 in Borrelia burgdorferi. J Bacteriol 189:8377–8380
    [Google Scholar]
  12. He M., Oman T., Xu H., Blevins J., Norgard M. V., Yang X. F. 2008; Abrogation of ospAB constitutively activates the Rrp2-RpoN-RpoS pathway ( σN- σS cascade) in Borrelia burgdorferi. Mol Microbiol 70:1453–1464
    [Google Scholar]
  13. Hodzic E., Tunev S., Feng S., Freet K. J., Barthold S. W. 2005; Immunoglobulin-regulated expression of Borrelia burgdorferi outer surface protein A in vivo. Infect Immun 73:3313–3321
    [Google Scholar]
  14. Howe T. R., LaQuier F. W., Barbour A. G. 1986; Organization of genes encoding two outer membrane proteins of the Lyme disease agent Borrelia burgdorferi within a single transcriptional unit. Infect Immun 54:207–212
    [Google Scholar]
  15. Hubner A., Yang X., Nolen D. M., Popova T. G., Cabello F. C., Norgard M. V. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729
    [Google Scholar]
  16. Jonsson M., Noppa L., Barbour A. G., Bergstrom S. 1992; Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun 60:1845–1853
    [Google Scholar]
  17. Liang F. T., Nelson F. K., Fikrig E. 2002; Molecular adaptation of Borrelia burgdorferi in the murine host. J Exp Med 196:275–280
    [Google Scholar]
  18. Liang F. T., Caimano M. J., Radolf J. D., Fikrig E. 2004a; Borrelia burgdorferi outer surface protein ( osp) B expression independent of ospA. Microb Pathog 37:35–40
    [Google Scholar]
  19. Liang F. T., Yan J., Mbow M. L., Sviat S. L., Gilmore R. D., Mamula M., Fikrig E. 2004b; Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect Immun 72:5759–5767
    [Google Scholar]
  20. Lucchetti-Miganeh C., Burrowes E., Baysse C., Ermel G. 2008; The post-transcriptional regulator CsrA plays a central role in the adaptation of bacterial pathogens to different stages of infection in animal hosts. Microbiology 154:16–29
    [Google Scholar]
  21. Miller J. C., Stevenson B. 2006; Borrelia burgdorferi erp genes are expressed at different levels within tissues of chronically infected mammalian hosts. Int J Med Microbiol 296 (Suppl. 40):185–194
    [Google Scholar]
  22. Neelakanta G., Li X., Pal U., Liu X., Beck D. S., DePonte K., Fish D., Kantor F. S., Fikrig E. 2007; Outer surface protein B is critical for Borrelia burgdorferi adherence and survival within Ixodes ticks. PLoS Pathog 3:e33
    [Google Scholar]
  23. Ohnishi J., Piesman J., de Silva A. M. 2001; Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc Natl Acad Sci U S A 98:670–675
    [Google Scholar]
  24. Pal U., Li X., Wang T., Montgomery R. R., Ramamoorthi N., Desilva A. M., Bao F., Yang X., Pypaert M. other authors 2004a; TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell 119:457–468
    [Google Scholar]
  25. Pal U., Yang X., Chen M., Bockenstedt L. K., Anderson J. F., Flavell R. A., Norgard M. V., Fikrig E. 2004b; OspC facilitates Borrelia burgdorferi invasion of Ixodes scapularis salivary glands. J Clin Invest 113:220–230
    [Google Scholar]
  26. Purser J. E., Norris S. J. 2000; Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:13865–13870
    [Google Scholar]
  27. Purser J. E., Lawrenz M. B., Caimano M. J., Howell J. K., Radolf J. D., Norris S. J. 2003; A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol 48:753–764
    [Google Scholar]
  28. Sadziene A., Thomas D. D., Barbour A. G. 1995; Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect Immun 63:1573–1580
    [Google Scholar]
  29. Schwan T. G., Piesman J. 2000; Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol 38:382–388
    [Google Scholar]
  30. Schwan T. G., Piesman J., Golde W. T., Dolan M. C., Rosa P. A. 1995; Induction of an outer surface protein on Borrelia burgdorferi during tick feeding. Proc Natl Acad Sci U S A 92:2909–2913
    [Google Scholar]
  31. Shi Y., Xu Q., McShan K., Liang F. T. 2008; Both decorin-binding proteins A and B are critical for the overall virulence of Borrelia burgdorferi. Infect Immun 76:1239–1246
    [Google Scholar]
  32. Sohaskey C. D., Zuckert W. R., Barbour A. G. 1999; The extended promoters for two outer membrane lipoprotein genes of Borrelia spp. uniquely include a T-rich region. Mol Microbiol 33:41–51
    [Google Scholar]
  33. Stewart P. E., Thalken R., Bono J. L., Rosa P. 2001; Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 39:714–721
    [Google Scholar]
  34. Stewart P. E., Wang X., Bueschel D. M., Clifton D. R., Grimm D., Tilly K., Carroll J. A., Weis J. J., Rosa P. A. 2006; Delineating the requirement for the Borrelia burgdorferi virulence factor OspC in the mammalian host. Infect Immun 74:3547–3553
    [Google Scholar]
  35. Strother K. O., Hodzic E., Barthold S. W., de Silva A. M. 2007; Infection of mice with Lyme disease spirochetes constitutively producing outer surface proteins A and B. Infect Immun 75:2786–2794
    [Google Scholar]
  36. Tsao J., Barbour A. G., Luke C. J., Fikrig E., Fish D. 2001; OspA immunization decreases transmission of Borrelia burgdorferi spirochetes from infected Peromyscus leucopus mice to larval Ixodes scapularis ticks. Vector Borne Zoonotic Dis 1:65–74
    [Google Scholar]
  37. Tsao J. I., Wootton J. T., Bunikis J., Luna M. G., Fish D., Barbour A. G. 2004; An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc Natl Acad Sci U S A 101:18159–18164
    [Google Scholar]
  38. Xu Q., Seemanapalli S. V., Lomax L., McShan K., Li X., Fikrig E., Liang F. T. 2005; Association of linear plasmid 28-1 with an arthritic phenotype of Borrelia burgdorferi. Infect Immun 73:7208–7215
    [Google Scholar]
  39. Xu Q., McShan K., Liang F. T. 2007a; Identification of an ospC operator critical for immune evasion of Borrelia burgdorferi. Mol Microbiol 64:220–231
    [Google Scholar]
  40. Xu Q., Seemanaplli S. V., McShan K., Liang F. T. 2007b; Increasing the interaction of Borrelia burgdorferi with decorin significantly reduces the 50 percent infectious dose and severely impairs dissemination. Infect Immun 75:4272–4281
    [Google Scholar]
  41. Xu Q., McShan K., Liang F. T. 2008a; Modification of Borrelia burgdorferi to overproduce OspA or VlsE alters its infectious behaviour. Microbiology 154:3420–3429
    [Google Scholar]
  42. Xu Q., McShan K., Liang F. T. 2008b; Essential protective role attributed to the surface lipoproteins of Borrelia burgdorferi against innate defences. Mol Microbiol 69:15–29
    [Google Scholar]
  43. Yang X. F., Pal U., Alani S. M., Fikrig E., Norgard M. V. 2004; Essential role for OspA/B in the life cycle of the Lyme disease spirochete. J Exp Med 199:641–648
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036608-0
Loading
/content/journal/micro/10.1099/mic.0.036608-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error